Parameter Identification of a Flexible-Joint Robot Axis using Sinusoidal Position Tracking

被引:0
作者
Hafez, Ishaq [1 ]
Dhaouadi, Rached [1 ]
机构
[1] Univ City Sharjah, Amer Univ Sharjah, Dept Elect Engn, Sharjah 26666, U Arab Emirates
关键词
Mechanical parameter identification; Inertia; Coupling stiffness; Friction; Flexible-joint robot axes; Two-mass model; Sinusoidal tracking; Position controller; VIBRATION; INERTIA; MOMENT; SYSTEM; DRIVES;
D O I
10.1007/s10846-025-02244-1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a novel method for identifying the mechanical parameters of flexible-joint robot axes using sinusoidal position tracking control. Accurate knowledge of mechanical parameters, such as inertia, coupling stiffness, and friction components, is important for designing effective controllers in robotic systems. These parameters are determined from integral values derived from the torque, speed, and position measurements of both the motor and load sides, leveraging the 90 degrees\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document} phase relationship between position, velocity, and acceleration terms. A robust sinusoidal position controller was developed, and the speed and position measurements of both the motor and load sides were utilized to implement the proposed method. When compared with parameters identified using standard methods, the proposed method shows an absolute percentage error ranging from 3.55% to 14.6% for the inertias and coupling stiffness, and 10.76% to 19% for the friction coefficients. The straightforward implementation and effectiveness of this method make it suitable for applications in industrial robotic arms, where precise control is essential for enhancing performance and operational efficiency.
引用
收藏
页数:19
相关论文
共 34 条
  • [1] Identification of Dynamic Parameters and Friction Coefficients: of a Robot with Planar Serial Kinemtic Linkage
    Afrough, Mohsen
    Abu Hanieh, Ahmed
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2019, 94 (01) : 3 - 13
  • [2] [Anonymous], 1997, Least-squares regression and covariance, P26, DOI [10.1007/978-0-585-25657-36, DOI 10.1007/978-0-585-25657-36]
  • [3] Carlson FB, 2019, Arxiv, DOI arXiv:1906.02003
  • [4] Identification of Shaft Stiffness and Inertias in Flexible Drive Systems
    Dhaouadi, Rached
    Hafez, Ishaq
    [J]. JOURNAL OF ROBOTICS AND MECHATRONICS, 2023, 35 (01) : 212 - 217
  • [5] High Precision Sinusoidal Position Tracking of a Voice-Coil Linear Servomotor Using Resonant Control
    Dhaouadi, Rached
    Takrouri, Mohannad
    Hafez, Ishaq
    [J]. ELECTRONICS, 2023, 12 (04)
  • [6] Compliance Control for Robot Manipulation in Contact with a Varied Environment Based on a New Joint Torque Controller
    Dong, Yunfei
    Ren, Tianyu
    Wu, Dan
    Chen, Ken
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2020, 99 (01) : 79 - 90
  • [7] Dorf R.C., 2021, Modern Control Systems, V14th
  • [8] Endisch C., 2010, parameter identification of a nonlinear two mass system using prior knowledge, P197, DOI [10.1007/978-90-481-9419-316, DOI 10.1007/978-90-481-9419-316]
  • [9] Empirical estimation of the power of test in outlier detection problem
    Erdogan, Bahattin
    Hekimoglu, Serif
    Durdag, Utkan Mustafa
    Ocalan, Taylan
    [J]. STUDIA GEOPHYSICA ET GEODAETICA, 2019, 63 (01) : 55 - 70
  • [10] Inertia and Friction Estimation of a Velocity-Controlled Servo Using Position Measurements
    Garrido, Ruben
    Concha, Antonio
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (09) : 4759 - 4770