A class of Hessian quotient equations in warped product manifolds

被引:0
作者
Sheng, Weimin [1 ]
Xue, Ke [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310058, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
warped product manifold; (eta; k)-convex; curvature equation; CURVATURE; HYPERSURFACES;
D O I
10.1007/s11425-023-2275-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Given a compact Riemannian manifold M and an open interval I in R, we consider a warped product manifold (M) over bar = I x(phi)M. For a positive function f defined on (M) over bar, we obtain the existence of the (eta, k)-convex hypersurface Sigma which satisfies a Hessian quotient equation sigma(k)(lambda(eta))/sigma(l)(lambda(eta)) = f(V,nu(V)) for 0 <= l < k < n, and eta = Hg - h, the first Newton transformation of the second fundamental form h. This generalizes the result of Chen et al. (2020) and gives a simpler proof of the curvature estimate. As a corollary, we can get an (eta, k)-convex solution for f(V,nu) = < V,nu >|V|(-n-1)h(V|V|) in Rn+1 for some prescribed function h, which can be viewed as the prescribed curvature measure type problem.
引用
收藏
页码:637 / 648
页数:12
相关论文
共 30 条
[1]   THE DIRICHLET PROBLEM FOR NONLINEAR 2ND-ORDER ELLIPTIC-EQUATIONS .1. MONGE-AMPERE EQUATION [J].
CAFFARELLI, L ;
NIRENBERG, L ;
SPRUCK, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1984, 37 (03) :369-402
[2]   Interior Hessian estimates for a class of Hessian type equations [J].
Chen, Chuanqiang ;
Dong, Weisong ;
Han, Fei .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (02)
[3]   The Lp Minkowski type problem for a class of mixed Hessian quotient equations [J].
Chen, Chuanqiang ;
Xu, Lu .
ADVANCES IN MATHEMATICS, 2022, 411
[4]   Starshaped compact hypersurfaces with prescribed Weingarten curvature in warped product manifolds [J].
Chen, Daguang ;
Li, Haizhong ;
Wang, Zhizhang .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
[5]   A class of Hessian quotient equations in Euclidean space [J].
Chen, Xiaojuan ;
Tu, Qiang ;
Xiang, Ni .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (12) :11172-11194
[6]   Curvature estimates for a class of Hessian type equations [J].
Chu, Jianchun ;
Jiao, Heming .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (03)
[7]   Curvature estimates for p-convex hypersurfaces of prescribed curvature [J].
Dong, Weisong .
REVISTA MATEMATICA IBEROAMERICANA, 2023, 39 (03) :1039-1058
[8]   Form-type equations on Kahler manifolds of nonnegative orthogonal bisectional curvature [J].
Fu, Jixiang ;
Wang, Zhizhang ;
Wu, Damin .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 52 (1-2) :327-344
[9]  
Fu JX, 2010, MATH RES LETT, V17, P887, DOI 10.4310/MRL.2010.v17.n5.a7
[10]   THE 1-FORM OF TORSION OF A COMPACT HERMITIAN MANIFOLD [J].
GAUDUCHON, P .
MATHEMATISCHE ANNALEN, 1984, 267 (04) :495-518