Partial Regularity for Navier-Stokes Equations

被引:0
作者
Wang, Lihe [1 ,2 ]
机构
[1] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
[2] Shanghai Jiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
关键词
Navier-Stokes equations; Partial regularity; Monotonicity formula; Compactness; SUITABLE WEAK SOLUTIONS; PROOF;
D O I
10.1007/s00021-025-00929-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using a more geometric approach, we demonstrate that the solutions to the Navier-Stokes equations remain regular except on a set with a null Hausdorff measure of dimension 1. The proof primarily relies on a new compactness lemma and the monotonicity property of harmonic functions. The combination of linear and nonlinear approximation schemes makes the proof clear and transparent.
引用
收藏
页数:13
相关论文
共 12 条
[1]  
[Anonymous], 1969, Quelques mthodes de rsolution des problmes aux limites non linaires
[2]   PARTIAL REGULARITY OF SUITABLE WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS [J].
CAFFARELLI, L ;
KOHN, R ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1982, 35 (06) :771-831
[3]  
Campanato S., 1966, ANN MAT PUR APPL, V73, P55
[4]   On Partial Regularity of Suitable Weak Solutions to the Three-Dimensional Navier-Stokes equations [J].
Ladyzhenskaya, O. A. ;
Seregin, G. A. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 1999, 1 (04) :356-387
[5]   On the movement of a viscous fluid to fill the space [J].
Leray, J .
ACTA MATHEMATICA, 1934, 63 (01) :193-248
[6]  
Lin FH, 1998, COMMUN PUR APPL MATH, V51, P241, DOI 10.1002/(SICI)1097-0312(199803)51:3<241::AID-CPA2>3.0.CO
[7]  
2-A
[8]   THE NAVIER-STOKES EQUATIONS ON A BOUNDED DOMAIN [J].
SCHEFFER, V .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 73 (01) :1-42
[9]  
Serrin J., 1963, NONLINEAR PROBLEMS, P1