Partitions and elementary symmetric polynomials: an experimental approach

被引:0
作者
Ballantine, Cristina [1 ]
Beck, George [2 ]
Merca, Mircea [3 ,4 ]
机构
[1] Coll Holy Cross, Dept Math & Comp Sci, Worcester, MA 01610 USA
[2] Dalhousie Univ, Dept Math & Stat, Halifax, NS B3H 4R2, Canada
[3] Natl Univ Sci & Technol Politehn Bucharest, Fundamental Sci Appl Engn Res Ctr, Dept Math Methods & Models, Bucharest 060042, Romania
[4] Acad Romanian Scientists, Bucharest 050044, Romania
关键词
Partitions; Elementary symmetric polynomials; Divisors;
D O I
10.1007/s11139-024-01001-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a partition lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document}, we write ej(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_j(\lambda )$$\end{document} for the jth\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$j<^>{\text {th}}$$\end{document} elementary symmetric polynomial ej\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_j$$\end{document} evaluated at the parts of lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} and ejpA(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_jp_A(n)$$\end{document} for the sum of ej(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_j(\lambda )$$\end{document} as lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} ranges over the set of partitions of n with parts in A. For ejpA(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_jp_A(n)$$\end{document}, we prove analogs of the classical formula for the partition function, p(n)=1/n & sum;k=0n-1 sigma 1(n-k)p(k)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p(n)=1/n \sum _{k=0}<^>{n-1}\sigma _1(n-k)p(k)$$\end{document}, where sigma 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _1$$\end{document} is the sum of divisors function. We prove several congruences for e2p4(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2p_4(n)$$\end{document}, the sum of e2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_2$$\end{document} over the set of partitions of n into four parts. Define the function prej(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {pre}_j(\lambda )$$\end{document} to be the multiset of monomials in ej(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_j(\lambda )$$\end{document}, which is itself a partition. If A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document} is a set of partitions, we define prej(A)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {pre}_j({\mathcal {A}})$$\end{document} to be the set of partitions prej(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {pre}_j(\lambda )$$\end{document} as lambda\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda $$\end{document} ranges over A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {A}}$$\end{document}. If P(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {P}}(n)$$\end{document} is the set of all partitions of n, we conjecture that the number of odd partitions in pre2(P(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {pre}_2({\mathcal {P}}(n))$$\end{document} is at least the number of distinct partitions. We prove some results about pre2(B(n))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {pre}_2({\mathcal {B}}(n))$$\end{document}, where B(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {B}}(n)$$\end{document} is the set of binary partitions of n. We conclude with conjectures on the log-concavity of functions related to ejp(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_jp(n)$$\end{document}, the sum of ej(lambda)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e_j(\lambda )$$\end{document} for all lambda is an element of P(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in {\mathcal {P}}(n)$$\end{document}.
引用
收藏
页数:22
相关论文
共 11 条
[1]  
Andrews G.E., 1976, THEORY PARTITIONS
[2]   Elementary Symmetric Partitions [J].
Ballantine, Cristina ;
Beck, George ;
Merca, Mircea ;
Sagan, Bruce E. .
ANNALS OF COMBINATORICS, 2024,
[3]   Log-concavity of the partition function [J].
DeSalvo, Stephen ;
Pak, Igor .
RAMANUJAN JOURNAL, 2015, 38 (01) :61-73
[4]   Generalized congruence properties of the restricted partition function p(n,m) [J].
Kronholm, Brandt .
RAMANUJAN JOURNAL, 2013, 30 (03) :425-436
[5]  
KWONG YHH, 1989, UTILITAS MATHEMATICA, V35, P3
[6]   From Symmetric Functions to Partition Identities [J].
Merca, Mircea .
AXIOMS, 2023, 12 (02)
[7]   Factorization theorems for generalized Lambert series and applications [J].
Merca, Mircea ;
Schmidt, Maxie D. .
RAMANUJAN JOURNAL, 2020, 51 (02) :391-419
[8]   PERIODICITIES OF PARTITION-FUNCTIONS AND STIRLING NUMBERS MODULO-P [J].
NIJENHUIS, A ;
WILF, HS .
JOURNAL OF NUMBER THEORY, 1987, 25 (03) :308-312
[9]  
Schneider R., 2018, Paper No. A13
[10]  
Sloane N.J.A., 2023, The On-Line Encyclopedia of Integer Sequences