Small molecule treatment alleviates photoreceptor cilia defects in LCA5-deficient human retinal organoids

被引:0
作者
Athanasiou, Dimitra [1 ]
Afanasyeva, Tess A. V. [2 ]
Chai, Niuzheng [1 ]
Ziaka, Kalliopi [1 ]
Jovanovic, Katarina [1 ]
Guarascio, Rosellina [1 ]
Boldt, Karsten [3 ]
Corral-Serrano, Julio C. [1 ]
Kanuga, Naheed [1 ]
Roepman, Ronald [2 ]
Collin, Rob W. J. [2 ]
Cheetham, Michael E. [1 ]
机构
[1] UCL Inst Ophthalmol, 11-43 Bath St, London EC1V 9EL, England
[2] Radboud Univ Nijmegen, Res Inst Med Innovat, Dept Human Genet, Med Ctr, Nijmegen, Netherlands
[3] Univ Tubingen, Inst Ophthalm Res, Core Facil Med Prote, Tubingen, Germany
来源
ACTA NEUROPATHOLOGICA COMMUNICATIONS | 2025年 / 13卷 / 01期
基金
英国惠康基金;
关键词
Retinal dystrophy; LCA; LCA5; Stem cell; Organoid; Gene editing; Retina; Cilia; Photoreceptor; Therapy; LEBER CONGENITAL AMAUROSIS; RETINITIS-PIGMENTOSA; MUTATIONS; GENE; LCA5; EXPRESSION; EUPATILIN; IDENTIFICATION; DEGENERATION; FASUDIL;
D O I
10.1186/s40478-025-01943-y
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Bialleleic pathogenic variants in LCA5 cause one of the most severe forms of Leber congenital amaurosis, an early-onset retinal disease that results in severe visual impairment. Here, we report the use of gene editing to generate isogenic LCA5 knock-out (LCA5 KO) induced pluripotent stem cells (iPSC) and their differentiation to retinal organoids. The molecular and cellular phenotype of the LCA5 KO retinal organoids was studied in detail and compared to isogenic controls as well as patient-derived retinal organoids. The absence of LCA5 was confirmed in retinal organoids by immunohistochemistry and western blotting. There were no major changes in retinal organoid differentiation or ciliation, however, the localisation of CEP290 and IFT88 was significantly altered in LCA5 KO and patient photoreceptor cilia with extension along the axoneme. The LCA5-deficient organoids also had shorter outer segments and rhodopsin was mislocalised to the outer nuclear layer. We also identified transcriptomic and proteomic changes associated with the loss of LCA5. Importantly, treatment with the small molecules eupatilin, fasudil or a combination of both drugs reduced CEP290 and IFT88 accumulation along the cilia. The treatments also improved rhodopsin traffic to the outer segment and reduced mislocalisation of rhodopsin in the outer nuclear layer (ONL). The improvements in cilia-associated protein localisation and traffic were accompanied by significant changes in the transcriptome towards control gene expression levels in many of the differentially expressed genes. In summary, iPSC-derived retinal organoids are a powerful model for investigating the molecular and cellular changes associated with loss of LCA5 function and highlight the therapeutic potential of small molecules to treat retinal ciliopathies.
引用
收藏
页数:16
相关论文
共 58 条
  • [1] den Hollander A.I., Roepman R., Koenekoop R.K., Cremers F.P.M., Leber congenital amaurosis: genes, proteins and disease mechanisms, Prog Retin Eye Res, 27, pp. 391-419, (2008)
  • [2] Kumaran N., Moore A.T., Weleber R.G., Michaelides M., Leber congenital amaurosis/early-onset severe retinal dystrophy: clinical features, molecular genetics and therapeutic interventions, Br J Ophthalmol, 101, pp. 1147-1154, (2017)
  • [3] Kumaran N., Pennesi M.E., Yang P., Trzupek K.M., Schlechter C., Moore A.T., Weleber R.G., Michaelides M., Leber Congenital Amaurosis / early-onset severe retinal dystrophy overview, GeneReviews®, (1993)
  • [4] Huang C.-H., Yang C.-M., Yang C.-H., Hou Y.-C., Chen T.-C., Leber’s congenital amaurosis: current concepts of genotype-phenotype correlations, Genes, 12, (2021)
  • [5] Kondkar A.A., Abu-Amero K.K., Leber congenital amaurosis: current genetic basis, scope for genetic testing and personalized medicine, Exp Eye Res, 189, (2019)
  • [6] Hollander A.I.D., Koenekoop R.K., Mohamed M.D., Arts H.H., Boldt K., Towns K.V., Sedmak T., Beer M., Nagel-Wolfrum K., McKibbin M., Dharmaraj S., Lopez I., Ivings L., Williams G.A., Springell K., Woods C.G., Jafri H., Rashid Y., Strom T.M., Zwaag B.V.D., Gosens I., Kersten F.F.J., Wijk E.V., Veltman J.A., Zonneveld M.N., Beersum S.E.C.V., Maumenee I.H., Wolfrum U., Cheetham M.E., Ueffing M., Cremers F.P.M., Inglehearn C.F., Roepman R., Mutations in LCA5, encoding the ciliary protein lebercilin,
  • [7] Ahmad A., Daud S., Kakar N., Nurnberg G., Nurnberg P., Babar M.E., Thoenes M., Kubisch C., Ahmad J., Bolz H.J., Identification of a novel LCA5 mutation in a Pakistani family with Leber congenital amaurosis and cataracts, Mol Vis, 17, pp. 1940-1945, (2011)
  • [8] Beryozkin A., Zelinger L., Bandah-Rozenfeld D., Shevach E., Harel A., Storm T., Sagi M., Eli D., Merin S., Banin E., Sharon D., Identification of mutations causing inherited retinal degenerations in the Israeli and Palestinian populations using homozygosity mapping, Invest Opthalmology Visual Sci, 55, (2014)
  • [9] Chen X., Sheng X., Sun X., Zhang Y., Jiang C., Li H., Ding S., Liu Y., Liu W., Li Z., Zhao C., Next-generation sequencing extends the phenotypic spectrum for LCA5 mutations: Novel LCA5 mutations in cone dystrophy, Sci Rep, 6, (2016)
  • [10] Corton M., Avila-Fernandez A., Vallespin E., Lopez-Molina M.I., Almoguera B., Martin-Garrido E., Tatu S.D., Khan M.I., Blanco-Kelly F., Riveiro-Alvarez R., Brion M., Garcia-Sandoval B., Cremers F.P.M., Carracedo A., Ayuso C., Involvement of LCA5 in Leber Congenital Amaurosis and Retinitis Pigmentosa in the Spanish Population, Ophthalmology, 121, pp. 399-407, (2014)