Blow-up phenomena for a nonlinear shallow water wave model

被引:0
作者
Wei, Siyu [1 ,2 ]
Meng, Jun [1 ]
Ma, Jun [1 ]
Lai, Shaoyong [2 ]
机构
[1] Kashi Univ, Sch Math & Statis, Kashi 844006, Xinjiang, Peoples R China
[2] Southwestern Univ Finance & Econ, Sch Math, Chengdu 611130, Peoples R China
关键词
Conservation law; Boundedness of solutions; Shallow water wave equations; Wave breaking; CAMASSA-HOLM; BREAKING; EQUATION; EULER;
D O I
10.1186/s13661-025-02018-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a nonlinear shallow water wave equation, which contains the Fornberg-Whitham model. The L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L<^>{2}$\end{document} conservation law of solutions for the nonlinear equation is derived. Employing the Riccati-type differential inequalities, we give sufficient conditions such that the wave breaking of solutions happens at finite time. The wave-breaking rate and lifespan of solutions are also discussed.
引用
收藏
页数:17
相关论文
共 25 条
[1]   Wave breaking for nonlinear nonlocal shallow water equations [J].
Constantin, A ;
Escher, J .
ACTA MATHEMATICA, 1998, 181 (02) :229-243
[2]   Dressing Method for the Degasperis-Procesi Equation [J].
Constantin, Adrian ;
Ivanov, Rossen .
STUDIES IN APPLIED MATHEMATICS, 2017, 138 (02) :205-226
[3]   The Hydrodynamical Relevance of the Camassa-Holm and Degasperis-Procesi Equations [J].
Constantin, Adrian ;
Lannes, David .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2009, 192 (01) :165-186
[4]   NUMERICAL AND THEORETICAL-STUDY OF CERTAIN NON-LINEAR WAVE PHENOMENA [J].
FORNBERG, B ;
WHITHAM, GB .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1978, 289 (1361) :373-404
[5]  
Freire IL, 2021, Communications in Mathematics, V29, P115, DOI [10.2478/cm-2021-0006, 10.2478/cm-2021-0006, DOI 10.2478/CM-2021-0006]
[6]   On the blow-up structure for the generalized periodic Camassa-Holm and Degasperis-Procesi equations [J].
Fu, Ying ;
Liu, Yue ;
Qu, Changzheng .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (07) :3125-3158
[7]  
Gao XJ, 2018, BOUND VALUE PROBL, DOI 10.1186/s13661-018-1065-0
[8]   Wave breaking for the Fomberg-Whitham equation [J].
Haziot, Susanna V. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (12) :8178-8185
[9]   Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces [J].
Holmes, John ;
Thompson, Ryan C. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (07) :4355-4381
[10]   Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation [J].
Hormann, Gunther .
MONATSHEFTE FUR MATHEMATIK, 2021, 195 (03) :421-449