Deep learning-based encryption scheme for medical images using DCGAN and virtual planet domain

被引:2
作者
Kumar, Manish [1 ]
Chivukula, Aneesh Sreevallabh [2 ]
Barua, Gunjan [2 ]
机构
[1] Birla Inst Technol & Sci Pilani, Dept Math, Hyderabad Campus, Hyderabad 500078, Telangana, India
[2] Birla Inst Technol & Sci Pilani, Dept Comp Sci & Informat Syst, Hyderabad Campus, Hyderabad 500078, India
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
DCGAN; Chaotic map; VPD; Encryption; Decryption; SYSTEM;
D O I
10.1038/s41598-024-84186-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The motivation for this article stems from the fact that medical image security is crucial for maintaining patient confidentiality and protecting against unauthorized access or manipulation. This paper presents a novel encryption technique that integrates the Deep Convolutional Generative Adversarial Networks (DCGAN) and Virtual Planet Domain (VPD) approach to enhance the protection of medical images. The method uses a Deep Learning (DL) framework to generate a decoy image, which forms the basis for generating encryption keys using a timestamp, nonce, and 1-D Exponential Chebyshev map (1-DEC). Experimental results validate the efficacy of the approach in safeguarding medical images from various security threats, including unauthorized access, tampering, and adversarial attacks. The randomness of the keys and encrypted images are demonstrated through the National Institute of Standards and Technology (NIST) SP 800-22 Statistical test suite provided in Tables 4 and 14, respectively. The robustness against key sensitivity, noise, cropping attacks, and adversarial attacks are shown in Figs. 15-18, 22-23, and 24. The data presented in Tables 5, 6, and 7 shows the proposed algorithm is robust and efficient in terms of time and key space complexity. Security analysis results are shown (such as histogram plots in Figs. 11-14 and correlation plots in Figs. 19-21). Information Entropy (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$7.9993 \pm 0.0001$$\end{document}), correlation coefficient (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 0.09$$\end{document}), Mean Square Error (MSE) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4166.3107 \pm 1645.2980$$\end{document}), Peak Signal to Noise Ratio (PSNR) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$12.2643 \pm 1.7032$$\end{document}), Number of Pixel Change Rate (NPCR) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$99.60\% \pm 0.2\%$$\end{document}), and Unified Average Changing Intensity (UACI) (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$33.47\% \pm 0.1\%$$\end{document}) underscore the high security and reliability of the encrypted images, are shown in Tables 8-11. Further, statistical NPCR and UACI are calculated in Tables 12 and 13, respectively. The proposed algorithm is also compared with existing algorithms, and compared values are provided in Table 15. The data presented in Tables 3-15 suggest that the proposed algorithm can opt for practical use.
引用
收藏
页数:42
相关论文
共 83 条
  • [1] Agrawal P., 2018, A new method of MPEG video encryption using frame shuffling, DOI [10.1049/iet-ipr.2018.5250, DOI 10.1049/IET-IPR.2018.5250]
  • [2] A hybrid medical image cryptosystem based on 4D-hyperchaotic S-boxes and logistic maps
    Ahmed, Sara M.
    Elkamchouchi, Hassan M. A.
    Elfahar, Adel
    El-Shafai, Walid
    Mohamed, Amira G.
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (03) : 8837 - 8865
  • [3] Secure medical image transmission using deep neural network in e-health applications
    Alarood, Ala Abdulsalam
    Faheem, Muhammad
    Al-Khasawneh, Mahmoud Ahmad
    Alzahrani, Abdullah I. A.
    Alshdadi, Abdulrahman A. A.
    [J]. HEALTHCARE TECHNOLOGY LETTERS, 2023, 10 (04) : 87 - 98
  • [4] Optimal algorithm for color medical encryption and compression images based on DNA coding and a hyperchaotic system in the moments
    Bencherqui, Ahmed
    Tahiri, Mohamed Amine
    Karmouni, Hicham
    Alfidi, Mohammed
    Motahhir, Saad
    Abouhawwash, Mohamed
    Askar, S. S.
    Wen, Shuhuan
    Qjidaa, Hassan
    Sayyouri, Mhamed
    [J]. ENGINEERING SCIENCE AND TECHNOLOGY-AN INTERNATIONAL JOURNAL-JESTECH, 2024, 50
  • [5] An image encryption scheme based on a modified AES algorithm by using a variable S-box
    Brahim, A. Hadj
    Pacha, A. Ali
    Said, N. Hadj
    [J]. JOURNAL OF OPTICS-INDIA, 2024, 53 (02): : 1170 - 1185
  • [6] Brock A, 2019, Arxiv, DOI [arXiv:1809.11096, 10.48550/arXiv.1809.11096]
  • [7] Multiple remote sensing image encryption scheme based on saliency extraction and magic cube circular motion
    Cai, Chang
    Wang, Yu
    Cao, Yinghong
    Sun, Bo
    Mou, Jun
    [J]. APPLIED INTELLIGENCE, 2024, : 5944 - 5960
  • [8] A fast chaos-based image encryption scheme with a novel plain image-related swapping block permutation and block diffusion
    Chai, Xiuli
    Gan, Zhihua
    Zhang, Miaohui
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (14) : 15561 - 15585
  • [9] Chaos-based medical image encryption scheme using special nonlinear filtering function based LFSR
    Deb, Subhrajyoti
    Bhuyan, Bubu
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (13) : 19803 - 19826
  • [10] Medical video encryption using novel 2D Cosine-Sine map and dynamic DNA coding
    Dhingra, Deepti
    Dua, Mohit
    [J]. MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (01) : 237 - 255