Weakly Supervised Classification for Nasopharyngeal Carcinoma With Transformer in Whole Slide Images

被引:0
作者
Hu, Ziwei [1 ]
Wang, Jianchao [2 ]
Gao, Qinquan [1 ]
Wu, Zhida [2 ]
Xu, Hanchuan [3 ]
Guo, Zhechen [1 ]
Quan, Jiawei [1 ]
Zhong, Lihua [2 ]
Du, Min [1 ]
Tong, Tong [1 ]
Chen, Gang [2 ]
机构
[1] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350108, Peoples R China
[2] Fujian Med Univ, Fujian Canc Hosp, Dept Pathol, Clin Oncol Sch, Fuzhou 350014, Peoples R China
[3] Fujian Med Univ, Fujian Canc Hosp, Clin Oncol Sch, Dept Radiat Oncol, Fuzhou 350014, Peoples R China
基金
中国国家自然科学基金;
关键词
Transformers; Tumors; Cancer; Hospitals; Annotations; Feature extraction; Breast cancer; Digital pathology; image pyramid; nasopharyngeal carcinoma; transformer; weakly supervised learning; NEURAL-NETWORK; DIAGNOSIS; CANCER;
D O I
10.1109/JBHI.2024.3422874
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pathological examination of nasopharyngeal carcinoma (NPC) is an indispensable factor for diagnosis, guiding clinical treatment and judging prognosis. Traditional and fully supervised NPC diagnosis algorithms require manual delineation of regions of interest on the gigapixel of whole slide images (WSIs), which however is laborious and often biased. In this paper, we propose a weakly supervised framework based on Tokens-to-Token Vision Transformer (WS-T2T-ViT) for accurate NPC classification with only a slide-level label. The label of tile images is inherited from their slide-level label. Specifically, WS-T2T-ViT is composed of the multi-resolution pyramid, T2T-ViT and multi-scale attention module. The multi-resolution pyramid is designed for imitating the coarse-to-fine process of manual pathological analysis to learn features from different magnification levels. The T2T module captures the local and global features to overcome the lack of global information. The multi-scale attention module improves classification performance by weighting the contributions of different granularity levels. Extensive experiments are performed on the 802-patient NPC and CAMELYON16 dataset. WS-T2T-ViT achieves an area under the receiver operating characteristic curve (AUC) of 0.989 for NPC classification on the NPC dataset. The experiment results of CAMELYON16 dataset demonstrate the robustness and generalizability of WS-T2T-ViT in WSI-level classification.
引用
收藏
页码:7251 / 7262
页数:12
相关论文
共 44 条
  • [1] DAS-MIL: Distilling Across Scales for MIL Classification of Histological WSIs
    Bontempo, Gianpaolo
    Porrello, Angelo
    Bolelli, Federico
    Calderara, Simone
    Ficarra, Elisa
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 248 - 258
  • [2] Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
    Campanella, Gabriele
    Hanna, Matthew G.
    Geneslaw, Luke
    Miraflor, Allen
    Silva, Vitor Werneck Krauss
    Busam, Klaus J.
    Brogi, Edi
    Reuter, Victor E.
    Klimstra, David S.
    Fuchs, Thomas J.
    [J]. NATURE MEDICINE, 2019, 25 (08) : 1301 - +
  • [3] Carion Nicolas, 2020, EUR C COMP VIS, P213, DOI [10.48550/arXiv. 2005.12872, DOI 10.48550/ARXIV.2005.12872, 10.1007/978-3-030-58452-813, DOI 10.1007/978-3-030-58452-813]
  • [4] Histopathology Whole Slide Image Analysis with Heterogeneous Graph Representation Learning
    Chan, Tsai Hor
    Cendra, Fernando Julio
    Ma, Lan
    Yin, Guosheng
    Yu, Lequan
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15661 - 15670
  • [5] Nasopharyngeal carcinoma
    Chen, Yu-Pei
    Chan, Anthony T. C.
    Quynh-Thu Le
    Blanchard, Pierre
    Sun, Ying
    Ma, Jun
    [J]. LANCET, 2019, 394 (10192) : 64 - 80
  • [6] Successful Identification of Nasopharyngeal Carcinoma in Nasopharyngeal Biopsies Using Deep Learning
    Chuang, Wen-Yu
    Chang, Shang-Hung
    Yu, Wei-Hsiang
    Yang, Cheng-Kun
    Yeh, Chi-Ju
    Ueng, Shir-Hwa
    Liu, Yu-Jen
    Chen, Tai-Di
    Chen, Kuang-Hua
    Hsieh, Yi-Yin
    Hsia, Yi
    Wang, Tong-Hong
    Hsueh, Chuen
    Kuo, Chang-Fu
    Yeh, Chao-Yuan
    [J]. CANCERS, 2020, 12 (02)
  • [7] Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning
    Coudray, Nicolas
    Ocampo, Paolo Santiago
    Sakellaropoulos, Theodore
    Narula, Navneet
    Snuderl, Matija
    Fenyo, David
    Moreira, Andre L.
    Razavian, Narges
    Tsirigos, Aristotelis
    [J]. NATURE MEDICINE, 2018, 24 (10) : 1559 - +
  • [8] Das K, 2018, I S BIOMED IMAGING, P578, DOI 10.1109/ISBI.2018.8363642
  • [9] Computer-Aided Pathologic Diagnosis of Nasopharyngeal Carcinoma Based on Deep Learning
    Diao, Songhui
    Hou, Jiaxin
    Yu, Hong
    Zhao, Xia
    Sun, Yikang
    Lambo, Ricardo Lewis
    Xie, Yaoqin
    Liu, Lei
    Qin, Wenjian
    Luo, Weiren
    [J]. AMERICAN JOURNAL OF PATHOLOGY, 2020, 190 (08) : 1691 - 1700
  • [10] Dosovitskiy Alexey., An image is worth 16x16 words: Transformers for image recognition at scale, P2020