Evaluating EAS Directions from TAIGA HiSCORE Data Using Fully Connected Neural Networks

被引:0
|
作者
A. P. Kryukov [1 ]
S. P. Polyakov [1 ]
Yu. Yu. Dubenskaya [1 ]
E. O. Gres [1 ]
E. B. Postnikov [2 ]
P. A. Volchugov [1 ]
D. P. Zhurov [1 ]
机构
[1] Skobeltsyn Institute of Nuclear Physics,
[2] Lomonosov Moscow State University,undefined
[3] Research Institute of Applied Physics,undefined
[4] Irkutsk State University,undefined
关键词
extensive area shower; EAS direction; Cherenkov detector; machine learning; artificial neural network; multilayer perceptron; skip connections;
D O I
10.3103/S0027134924702199
中图分类号
学科分类号
摘要
引用
收藏
页码:S724 / S730
相关论文
共 50 条
  • [11] Evaluating Surgical Skills from Kinematic Data Using Convolutional Neural Networks
    Fawaz, Hassan Ismail
    Forestier, Germain
    Weber, Jonathan
    Idoumghar, Lhassane
    Muller, Pierre-Alain
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 214 - 221
  • [12] EQUIVALENCE OF APPROXIMATION BY CONVOLUTIONAL NEURAL NETWORKS AND FULLY-CONNECTED NETWORKS
    Petersen, Philipp
    Voigtlaender, Felix
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (04) : 1567 - 1581
  • [13] RTM Gravity Forward Modeling Using Improved Fully Connected Deep Neural Networks
    Zhang, Baoyu
    Yang, Meng
    Feng, Wei
    Jiang, Mi
    Yan, Xinyuan
    Zhong, Min
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [14] VLSI implementation using fully connected neural networks for energy consumption over neurons
    Mehbodniya, Abolfazl
    Kumar, Ravi
    Mohanty, Sachi Nandan
    Geetha, A.
    Bedi, Pradeep
    Tripathi, Rohit
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 52
  • [15] Property Inference Attacks on Fully Connected Neural Networks using Permutation Invariant Representations
    Ganju, Karan
    Wang, Qi
    Yang, Wei
    Gunter, Carl A.
    Borisov, Nikita
    PROCEEDINGS OF THE 2018 ACM SIGSAC CONFERENCE ON COMPUTER AND COMMUNICATIONS SECURITY (CCS'18), 2018, : 619 - 633
  • [16] VLSI FULLY CONNECTED NEURAL NETWORKS FOR THE IMPLEMENTATION OF OTHER TOPOLOGIES
    CARRABINA, J
    LISA, F
    AVELLANA, N
    PEREZVICENTE, CJ
    VALDERRAMA, E
    LECTURE NOTES IN COMPUTER SCIENCE, 1991, 540 : 277 - 284
  • [17] Training Fully Connected Neural Networks is ∃R-Complete
    Bertschinger, Daniel
    Hertrich, Christoph
    Jungeblut, Paul
    Miltzow, Tillmann
    Weber, Simon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [18] Constructive algorithm for fully connected cascade feedforward neural networks
    Qiao, Junfei
    Li, Fanjun
    Han, Honggui
    Li, Wenjing
    NEUROCOMPUTING, 2016, 182 : 154 - 164
  • [19] Random Fully Connected Neural Networks as Perturbatively Solvable Hierarchies
    Hanin, Boris
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 58
  • [20] Factorized Dynamic Fully-Connected Layers for Neural Networks
    Babiloni, Francesca
    Tanay, Thomas
    Deng, Jiankang
    Maggioni, Matteo
    Zafeiriou, Stefanos
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 1366 - 1375