Energy balance analysis suggests that lactate is not a direct cause of the slow component of oxygen uptake kinetics

被引:0
作者
Taboni, Anna [1 ]
Barilari, Caterina [1 ]
Vinetti, Giovanni [2 ]
Fagoni, Nazzareno [1 ]
Ferretti, Guido [1 ]
机构
[1] Univ Brescia, Dept Mol & Translat Med, Viale Europa 11, I-25123 Brescia, Italy
[2] Eurac Res, Inst Mt Emergency Med, Bolzano, Italy
关键词
Energetics; Slow component; Oxygen consumption; Kinetics; Exercise; HUMAN SKELETAL-MUSCLE; PULMONARY O-2 UPTAKE; DOTO(2) KINETICS; CYCLE ERGOMETER; CARDIAC-OUTPUT; WORK ONSET; FIBER-TYPE; EXERCISE; CONSUMPTION; MODERATE;
D O I
10.1007/s00421-024-05657-2
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
PurposeThe mechanisms of oxygen uptake (V(center dot)O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}}{\text{O}}_{2}$$\end{document}) slow component in the severe exercise intensity domain are still a matter of debate. We tested the hypothesis that the rate of blood lactate ([La]) accumulation above maximal lactate steady state (MLSS) is a major cause of V(center dot)O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}}{\text{O}}_{2}$$\end{document} slow component.MethodsOn 13 males exercising on a cycle-ergometer, we measured gas exchanges, heart rate, and [La] during maximal incremental exercise test to determine maximal aerobic power (w.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\text{w}}\limits<^>{.}$$\end{document}max) and at constant power exercise tests at 60%, 65%, 70%, and 80% of w.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\text{w}}\limits<^>{.}$$\end{document}max.ResultsMaximal V(center dot)O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}}{\text{O}}_{2}$$\end{document} was 3.19 +/- 0.37 l<middle dot>min-1, w.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\text{w}}\limits<^>{.}$$\end{document}max was 283 +/- 28 W. At 60% w.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\text{w}}\limits<^>{.}$$\end{document}max all variables attained steady state in all subjects. Power at MLSS was 177 +/- 21 W. At 80% w.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\text{w}}\limits<^>{.}$$\end{document}max a clear V(center dot)O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}}{\text{O}}_{2}$$\end{document} slow component was observed in all subjects, exercise lasted 11.3 +/- 3.1 min and [La] was 7.4 +/- 2.2 mmol at 5 min and 11.5 +/- 3.6 mmol at 10 min. The energy balance computed at 80% w. \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\text{w}}\limits<^>{.}$$\end{document}max resulted compatible with the principles of the energetics of muscular exercise, if we assume linear [La] increase, and thus constant metabolic power provided by [La] accumulation. Conversely, the metabolic power provided by V(center dot)O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}}{\text{O}}_{2}$$\end{document} slow component increases with time. This contrast is incompatible with the tested hypothesis that consequently must be rejected.ConclusionThis study excluded [La] accumulation as a main cause of V(center dot)O2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{\text{V}}}{\text{O}}_{2}$$\end{document} slow component.
引用
收藏
页码:957 / 966
页数:10
相关论文
共 36 条
  • [31] System Analysis for Oxygen Uptake Kinetics with Step and Pseudorandom Binary Sequence Exercise in Endurance Athletes
    Yoshida, Takayoshi
    Abe, Daijiro
    Fukuoka, Yoshiyuki
    Hughson, Richard
    MEASUREMENT IN PHYSICAL EDUCATION AND EXERCISE SCIENCE, 2008, 12 (01) : 1 - 9
  • [32] Prediction of oxygen uptake kinetics during heavy-intensity cycling exercise by machine learning analysis
    Hedge, Eric T.
    Amelard, Robert
    Hughson, Richard L.
    JOURNAL OF APPLIED PHYSIOLOGY, 2023, 134 (06) : 1530 - 1536
  • [33] ESTIMATED MAXIMUM OXYGEN UPTAKE AND AGREEMENT ANALYSIS BETWEEN DIRECT AND PREDICTED MEASUREMENT BY DIFFERENT FIELD TESTS
    Batista, Mariana Biagi
    Cyrino, Edilson Serpeloni
    Milanez, Vinicius Flavio
    Coelho e Silva, Manuel Joao
    de Arruda, Miguel
    Vaz Ronque, Enio Ricardo
    REVISTA BRASILEIRA DE MEDICINA DO ESPORTE, 2013, 19 (06) : 404 - 409
  • [34] Oxygen uptake and heart rate kinetics during dynamic upper and lower body exercise: an investigation by time-series analysis
    Drescher, U.
    Koschate, J.
    Hoffmann, U.
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2015, 115 (08) : 1665 - 1672
  • [35] Estimating oxygen uptake and energy expenditure during treadmill walking by neural network analysis of easy-to-obtain inputs
    Beltrame, Thomas
    Amelard, Robert
    Villar, Rodrigo
    Shafiee, Mohammad J.
    Wong, Alexander
    Hughson, Richard L.
    JOURNAL OF APPLIED PHYSIOLOGY, 2016, 121 (05) : 1226 - 1233
  • [36] Analysis of heart rate and oxygen uptake kinetics studied by two different pseudo-random binary sequence work rate amplitudes
    Drescher, U.
    Koschate, J.
    Schiffer, T.
    Schneider, S.
    Hoffmann, U.
    RESPIRATORY PHYSIOLOGY & NEUROBIOLOGY, 2017, 240 : 70 - 80