Structural insights into the RNA-dependent RNA polymerase complexes from highly pathogenic Marburg and Ebola viruses

被引:0
|
作者
Li, Guobao [1 ]
Du, Tianjiao [1 ]
Wang, Jiening [2 ]
Jie, Kaiyue [1 ]
Ren, Zhuolu [1 ]
Zhang, Xiaokang [3 ]
Zhang, Long [1 ]
Wu, Shan [2 ]
Ru, Heng [1 ]
机构
[1] Zhejiang Univ, Affiliated Hosp 2, Life Sci Inst, Zhejiang Key Lab Mol Canc Biol Sch Med, Hangzhou, Peoples R China
[2] Hubei Univ, Hubei Collaborat Innovat Ctr Green Transformat Bio, Sch Life Sci, State Key Lab Biocatalysis & Enzyme Engn, Wuhan, Peoples R China
[3] Chinese Acad Sci, Shenzhen Hong Kong Inst Brain Sci Shenzhen Fundame, Brain Cognit & Brain Dis Inst, Shenzhen Inst Adv Technol,Interdisciplinary Ctr Br, Shenzhen, Peoples R China
基金
中国国家自然科学基金;
关键词
VESICULAR STOMATITIS-VIRUS; L PROTEIN; CRYO-EM; REPLICATION; VP35; HOMOOLIGOMERIZATION; TRANSCRIPTION;
D O I
10.1038/s41467-025-58308-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Ebola and the Marburg viruses belong to the Filoviridae family, a group of filamentous, single-stranded, negative-sensed RNA viruses. Upon infection, uncontrolled propagation of the Ebola and the Marburg viruses causes severe hemorrhagic fevers with high mortality rates. The replication and transcription of viral genomes are mediated by a polymerase complex consisting of two proteins: L and its cofactor VP35. However, the molecular mechanism of filovirus RNA synthesis remains understudied due to the lack of high-resolution structures of L and VP35 complexes from these viruses. Here, we present the cryo-EM structures of the polymerase complexes for the Marburg virus and the Ebola virus at 2.7 & Aring; and 3.1 & Aring; resolutions respectively. Despite the similar assembly and overall structures between these two viruses, we identify virus-specific L-VP35 interactions. Our data show that intergeneric exchange of VP35 would diminish these interactions and prevent the formation of a functional chimeric polymerase complex between L protein and heterologous VP35. Additionally, we identify a contracted conformation of the Ebola virus polymerase structure, revealing the structural dynamics of the polymerase during RNA synthesis. These insights enhance our understanding of filovirus RNA synthesis mechanisms and may facilitate the development of antiviral drugs targeting filovirus polymerase.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Recent advances in the discovery of potent RNA-dependent RNA-polymerase (RdRp) inhibitors targeting viruses
    Kumar, Rahul
    Mishra, Sahil
    Shreya
    Maurya, Sushil K.
    RSC MEDICINAL CHEMISTRY, 2021, 12 (03): : 306 - 320
  • [22] In situ Structure of Rotavirus VP1 RNA-Dependent RNA Polymerase
    Jenni, Simon
    Salgado, Eric N.
    Herrmann, Tobias
    Li, Zongli
    Grant, Timothy
    Grigorieff, Nikolaus
    Trapani, Stefano
    Estrozi, Leandro F.
    Harrison, Stephen C.
    JOURNAL OF MOLECULAR BIOLOGY, 2019, 431 (17) : 3124 - 3138
  • [23] Organization, Function, and Therapeutic Targeting of the Morbillivirus RNA-Dependent RNA Polymerase Complex
    Sourimant, Julien
    Plemper, Richard K.
    VIRUSES-BASEL, 2016, 8 (09):
  • [24] Arterivirus RNA-dependent RNA polymerase: Vital enzymatic activity remains elusive
    Lehmann, Kathleen C.
    Gorbalenya, Alexander E.
    Snijder, Eric J.
    Posthuma, Clara C.
    VIROLOGY, 2016, 487 : 68 - 74
  • [25] Structure and RNA template requirements of Arabidopsis RNA-DEPENDENT RNA POLYMERASE 2
    Fukudome, Akihito
    Singh, Jasleen
    Mishra, Vibhor
    Reddem, Eswar
    Martinez-Marquez, Francisco
    Wenzel, Sabine
    Yan, Rui
    Shiozaki, Momoko
    Yu, Zhiheng
    Wang, Joseph Che-Yen
    Takagi, Yuichiro
    Pikaard, Craig S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (51)
  • [26] RNA polymerase II acts as an RNA-dependent RNA polymerase to extend and destabilize a non-coding RNA
    Wagner, Stacey D.
    Yakovchuk, Petro
    Gilman, Benjamin
    Ponicsan, Steven L.
    Drullinger, Linda F.
    Kugel, Jennifer F.
    Goodrich, James A.
    EMBO JOURNAL, 2013, 32 (06) : 781 - 790
  • [27] Mechanism of reaction of RNA-dependent RNA polymerase from SARS-CoV-2
    Aranda, Juan
    Wieczor, Milosz
    Terrazas, Montserrat
    Brun-Heath, Isabelle
    Orozco, Modesto
    CHEM CATALYSIS, 2022, 2 (05): : 1084 - 1099
  • [28] Structure of plant RNA-DEPENDENT RNA POLYMERASE 2, an enzyme involved in small interfering RNA production
    Du, Xuan
    Yang, Zhenlin
    Ariza, Alfredo Jose Florez
    Wang, Qian
    Xie, Guohui
    Li, Sisi
    Du, Jiamu
    PLANT CELL, 2022, 34 (06) : 2140 - 2149
  • [29] Structure of the RNA-dependent RNA polymerase P2 from the cystovirus φ8
    Latimer-Smith, Merlyn
    Salgado, Paula S.
    Forsyth, Ismay
    Makeyev, Eugene
    Poranen, Minna M.
    Stuart, Dave I.
    Grimes, Jonathan M.
    El Omari, Kamel
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [30] Characterization of the Conformational Hotspots of the RNA-Dependent RNA Polymerase Complex Identifies a Unique Structural Malleability of nsp8
    Gharui, Sowmomita
    Sengupta, Durba
    Das, Atanu
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (41) : 9959 - 9975