Impact of net-zero emissions on atmospheric CO2 concentration in China: Ideal simulations based on the GEOS-Chem model

被引:0
作者
Tan, Jingye [1 ,2 ]
Wang, Jun [1 ,2 ]
Mao, Huiqin [3 ]
Wang, Hengmao [1 ,2 ]
Liu, Zhiqiang [4 ]
Wang, Meirong [5 ,6 ]
Yan, Ran [1 ,2 ]
Wang, Xunmei [1 ,2 ]
Jiang, Fei [1 ,2 ]
机构
[1] Nanjing Univ, Frontiers Sci Ctr Crit Earth Mat Cycling, Sch Earth Sci & Engn, Nanjing 210023, Peoples R China
[2] Nanjing Univ, Jiangsu Prov Key Lab Geog Informat Sci & Technol, Key Lab Land Satellite Remote Sensing Applicat, Sch Geog & Ocean Sci,Minist Nat Resources, Nanjing 210023, Peoples R China
[3] Minist Environm Protect, Satellite Environm Applicat Ctr, Beijing 100094, Peoples R China
[4] CMA Key Open Lab Transforming Climate Resources Ec, Chongqing 401147, Peoples R China
[5] Nanjing Univ Informat Sci & Technol, Collaborat Innovat Ctr Forecast & Evaluat Meteorol, Key Lab Meteorol Disasters, Minist Educ, Nanjing 210044, Peoples R China
[6] Xizang Meteorol Serv, Xizang Field Stn Sci Observat & Res Atmospher Wate, Xigaze & Medog Natl Climate Observ, Lhasa 850000, Peoples R China
基金
中国国家自然科学基金;
关键词
XCO2; GEOS-Chem; Carbon neutrality; Net-zero emissions; Surface CO2 concentrations; SATELLITE-OBSERVATIONS; RETRIEVALS; INVENTORY; COMPONENT; VERSATILE; VERSION; GOSAT;
D O I
10.1007/s11430-024-1502-y
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
Elevated atmospheric carbon dioxide (CO2) concentrations have caused global climate change such as global warming and more frequent climate extremes. Countries worldwide have proposed carbon neutrality strategies to curb the rising CO2 concentrations. To investigate the impact of China's carbon neutrality goal on atmospheric CO2 concentrations, we conducted a series of ideal simulations from 2015 to 2019 using a global 3D chemistry transport model, Goddard Earth Observing System Chemistry (GEOS-Chem). Compared with the column-averaged dry-air mole fraction of atmospheric CO2 (XCO2) from Orbiting Carbon Observatory-2 (OCO-2) and surface CO2 measurements in ObsPack, we find that GEOS-Chem effectively reproduces the spatiotemporal variability of CO2. The model exhibits a root mean square error (RMSE) of 1.51 ppm (R-2=0.89) for OCO-2 XCO2 in China and 2.65 ppm (R-2=0.75) for surface CO2 concentrations at the WLG station. Further, compared to 2.83 ppm yr(-1) in the control experiment, we suggest that net-zero CO2 emissions in China decelerate the increasing trends of XCO2 to 1.81 ppm yr(-1), making a decrease of approximately 35.89%. Meanwhile, the seasonal cycle amplitude (SCA) of XCO2 is moderately reduced from 7.39 +/- 0.81 to 6.75 +/- 0.70 ppm, representing a relative reduction of 9.91%. Spatially, net-zero CO2 emissions induce a more significant decrease in XCO2 trends over northern and southern China, while their impact on SCA is more evident in northern and northeastern China. Moreover, ideal experiments demonstrate that zero fossil CO2 emissions lead to a greater attenuation of the linear trends of XCO2 by 40.81%, while the absence of terrestrial CO2 sinks largely diminishes the SCA by 16.61%. Additionally, trends and SCA in surface CO2 concentrations exhibit almost identical decreasing responses to net-zero CO2 emissions but display greater sensitivities compared to XCO2. Overall, our study underscores the potential of China's carbon neutrality goal in mitigating global warming, underscoring the need for concerted and collaborative efforts from nations worldwide.
引用
收藏
页码:867 / 881
页数:15
相关论文
共 59 条
  • [1] AghaKouchak A., Chiang F., Huning L.S., Love C.A., Mallakpour I., Mazdiyasni O., Moftakhari H., Papalexiou S.M., Ragno E., Sadegh M., Climate extremes and compound hazards in a warming world, Annu Rev Earth Planet Sci, 48, pp. 519-548, (2020)
  • [2] Allahudheen S., Chandra A.B., Nayak R.K., Dadhwal V.K., Krishnapriya M., Lakshmaiah M.V., High-resolution GEOS-Chem model for Indian monsoon region: Seasonal cycle and budget of tropospheric CO<sub>2</sub>, Atmos Environ, 309, (2023)
  • [3] Bukosa B., Fisher J.A., Deutscher N.M., Jones D.B.A., A coupled CH<sub>4</sub>, CO and CO<sub>2</sub> simulation for improved chemical source modeling, Atmosphere, 14, (2023)
  • [4] Byrne B., Baker D.F., Basu S., Bertolacci M., Bowman K.W., Carroll D., Chatterjee A., Chevallier F., Ciais P., Cressie N., Crisp D., Crowell S., Deng F., Deng Z., Deutscher N.M., Dubey M.K., Feng S., Garcia O.E., Griffith D.W.T., Herkommer B., Hu L., Jacobson A.R., Janardanan R., Jeong S., Johnson M.S., Jones D.B.A., Kivi R., Liu J.J., Liu Z.Q., Maksyutov S., Miller J.B., Miller S.M., Morino I., Notholt J., Oda T., O'Dell C.W., Oh Y.S., Ohyama H., Patra P.K., Peiro H., Petri C., Philip S., Poll
  • [5] Chatterjee A., Gierach M.M., Sutton A.J., Feely R.A., Crisp D., Eldering A., Gunson M.R., O'Dell C.W., Stephens B.B., Schimel D.S., Influence of El Niño on atmospheric CO<sub>2</sub> over the tropical Pacific Ocean: Findings from NASA’s OCO-2 mission, Science, 358, (2017)
  • [6] Chen S., Liu J., Zhang Q., Teng F., McLellan B.C., A critical review on deployment planning and risk analysis of carbon capture, utilization, and storage (CCUS) toward carbon neutrality, Renew Sust Energy Rev, 167, (2022)
  • [7] Cheng S.Y., An X.Q., Zhou L.X., Tans P.P., Jacobson A., Atmospheric CO<sub>2</sub> at Waliguan station in China: Transport climatology, temporal patterns and source-sink region representativeness, Atmos Environ, 159, pp. 107-116, (2017)
  • [8] Connor B.J., Boesch H., Toon G., Sen B., Miller C., Crisp D., Orbiting Carbon Observatory: Inverse method and prospective error analysis, J Geophys Res, 113, (2008)
  • [9] Dong H.M., Liu Y.S., Zhao Z.H., Tan X.J., Managi S., Carbon neutrality commitment for China: From vision to action, Sust Sci, 17, pp. 1741-1755, (2022)
  • [10] Eldering A., Wennberg P.O., Crisp D., Schimel D.S., Gunson M.R., Chatterjee A., Liu J., Schwandner F.M., Sun Y., O'Dell C.W., Frankenberg C., Taylor T., Fisher B., Osterman G.B., Wunch D., Hakkarainen J., Tamminen J., Weir B., The Orbiting Carbon Observatory-2 early science investigations of regional carbon dioxide fluxes, Science, 358, (2017)