Identification and verification of diagnostic biomarkers for deep infiltrating endometriosis based on machine learning algorithms

被引:1
作者
Shi, Shanping [1 ]
Huang, Chao [1 ]
Tang, Xiaojian [1 ]
Liu, Hua [1 ]
Feng, Weiwei [1 ]
Chen, Chen [1 ]
机构
[1] Shanghai Jiao Tong Univ, Ruijin Hosp, Sch Med, Dept Obstet & Gynecol, Shanghai 200025, Peoples R China
关键词
Deep infiltrating endometriosis (DIE); USP14; Machine learning algorithms; Single-cell RNA sequencing (scRNA-seq); Immunohistochemical staining; USP14; PATHOGENESIS; MANAGEMENT; CARCINOMA; ENZYMES; CELLS;
D O I
10.1186/s13036-024-00466-9
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
This study addresses the challenges in the early diagnosis of deep infiltrating endometriosis (DIE) by exploring the potential role of the deubiquitinating enzyme USP14. By analyzing the GSE141549 dataset from the Gene Expression Omnibus (GEO) database, using bioinformatics methods and three machine learning algorithms (LASSO, Random Forest, and Support Vector Machine), the key feature gene USP14 was identified. The results indicated that USP14 is significantly upregulated in DIE and exhibits good predictive value (AUC = 0.786). Further analysis revealed the important role of USP14 in muscle function, cellular growth factor response, and maintenance of chromosome structure, and its close association with various immune cell functions. Immunohistochemical staining confirmed the high expression of USP14 in DIE tissues. This study provides a new molecular target for the early diagnosis of DIE, which holds significant clinical implications and potential application value.
引用
收藏
页数:17
相关论文
共 52 条
[1]   Immune-stimulating antibody conjugates elicit robust myeloid activation and durable antitumor immunity [J].
Ackerman, Shelley E. ;
Pearson, Cecelia I. ;
Gregorio, Joshua D. ;
Gonzalez, Joseph C. ;
Kenkel, Justin A. ;
Hartmann, Felix J. ;
Luo, Angela ;
Ho, Po Y. ;
LeBlanc, Heidi ;
Blum, Lisa K. ;
Kimmey, Samuel C. ;
Luo, Andrew ;
Nguyen, Murray L. ;
Paik, Jason C. ;
Sheu, Lauren Y. ;
Ackerman, Benjamin ;
Lee, Arthur ;
Li, Hai ;
Melrose, Jennifer ;
Laura, Richard P. ;
Ramani, Vishnu C. ;
Henning, Karla A. ;
Jackson, David Y. ;
Safina, Brian S. ;
Yonehiro, Grant ;
Devens, Bruce H. ;
Carmi, Yaron ;
Chapin, Steven J. ;
Bendall, Sean C. ;
Kowanetz, Marcin ;
Dornan, David ;
Engleman, Edgar G. ;
Alonso, Michael N. .
NATURE CANCER, 2021, 2 (01) :18-+
[2]   Interdisciplinary Diagnosis and Treatment of Deep Infiltrating Endometriosis [J].
Alkatout, I. ;
Egberts, J. -H. ;
Mettler, L. ;
Doniec, M. ;
Wedel, T. ;
Juenemann, K. -P. ;
Becker, T. ;
Jonat, W. ;
Schollmeyer, T. .
ZENTRALBLATT FUR CHIRURGIE, 2016, 141 (06) :630-638
[3]   Systems genetics view of endometriosis: a common complex disorder [J].
Baranov, Vladislav S. ;
Ivaschenko, Tatyana E. ;
Liehr, Thomas ;
Yarmolinskaya, Maria I. .
EUROPEAN JOURNAL OF OBSTETRICS & GYNECOLOGY AND REPRODUCTIVE BIOLOGY, 2015, 185 :59-65
[4]   New Therapeutics in Endometriosis: A Review of Hormonal, Non-Hormonal, and Non-Coding RNA Treatments [J].
Brichant, Geraldine ;
Laraki, Ines ;
Henry, Laurie ;
Munaut, Carine ;
Nisolle, Michelle .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
[5]   Pathogenesis and pathophysiology of endometriosis [J].
Burney, Richard O. ;
Giudice, Linda C. .
FERTILITY AND STERILITY, 2012, 98 (03) :511-519
[6]  
Chen BB, 2018, METHODS MOL BIOL, V1711, P243, DOI 10.1007/978-1-4939-7493-1_12
[7]   Bioinformatical analysis of the key differentially expressed genes and associations with immune cell infiltration in development of endometriosis [J].
Chen, Shengnan ;
Chai, Xiaoshan ;
Wu, Xianqing .
BMC GENOMIC DATA, 2022, 23 (01)
[8]   Management Challenges of Deep Infiltrating Endometriosis [J].
D'Alterio, Maurizio Nicola ;
D'Ancona, Gianmarco ;
Raslan, Mohamed ;
Tinelli, Raffaele ;
Daniilidis, Angelos ;
Angioni, Stefano .
INTERNATIONAL JOURNAL OF FERTILITY & STERILITY, 2021, 15 (02) :88-94
[9]   Deubiquitinating enzymes: A new class of biological regulators [J].
D'Andrea, A ;
Pellman, D .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1998, 33 (05) :337-352
[10]   Machine Learning in Medicine [J].
Deo, Rahul C. .
CIRCULATION, 2015, 132 (20) :1920-1930