A simple proximal algorithm based on the golden ratio for equilibrium problem on Hadamard manifolds

被引:1
作者
Oyewole, O. K. [1 ]
Abass, H. A. [2 ]
Moshokoa, S. P. [1 ]
机构
[1] Tshwane Univ Technol, Dept Math & Stat, Arcadia,PMB 0007, Pretoria, South Africa
[2] Sefako Makgatho Hlth Sci Univ, ZA-0204 Pretoria, South Africa
关键词
Equilibrium problem; golden ratio; Hadamard manifold; modified proximal; pseudomonotone operator; EXTRAGRADIENT ALGORITHMS; POINT ALGORITHM; CONVERGENCE; EXISTENCE;
D O I
10.1007/s12215-024-01183-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a simple proximal method which is combined with the inertial and golden ratio technique as extrapolation methods for approximating a solution to the equilibrium problem. The proposed method is self-adaptive such that its execution does not depend on the knowledge of the Lipschitz condition of the associated pseudomonotone cost operator. Under mild and standard assumptions on the control parameters, we showed that the sequence of iterates generated by this method converges to a solution of the problem. Assuming that the cost operator is strongly pseudomonotone, we prove that the sequence of iterates converge R-linearly to a solution of the EP. To show the numerical efficiency of this proposed method, we displayed some numerical experiments.
引用
收藏
页数:25
相关论文
共 55 条
[11]   Equilibrium problems in Hadamard manifolds [J].
Colao, Vittorio ;
Lopez, Genaro ;
Marino, Giuseppe ;
Martin-Marquez, Victoria .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 388 (01) :61-77
[12]  
Combettes PL, 2005, J NONLINEAR CONVEX A, V6, P117
[13]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[14]   An extragradient method for equilibrium problems on Hadamard manifolds [J].
Cruz Neto, J. X. ;
Santos, P. S. M. ;
Soares, P. A., Jr. .
OPTIMIZATION LETTERS, 2016, 10 (06) :1327-1336
[15]   Convex- and monotone-transformable mathematical programming problems and a proximal-like point method [J].
Da Cruz Neto, J. X. ;
Ferreira, O. P. ;
Perez, L. R. Lucambio ;
Nemeth, S. Z. .
JOURNAL OF GLOBAL OPTIMIZATION, 2006, 35 (01) :53-69
[16]   Explicit iterative algorithms for solving equilibrium problems [J].
Dang Van Hieu ;
Pham Kim Quy ;
Le Van Vy .
CALCOLO, 2019, 56 (02)
[17]   Modified extragradient algorithms for solving equilibrium problems [J].
Dang Van Hieu ;
Cho, Yeol Je ;
Xiao, Yi-bin .
OPTIMIZATION, 2018, 67 (11) :2003-2029
[18]  
Facchinei F., 2003, Finite-Dimensional Variational Inequalities and Complementarity Problems
[19]   An explicit extragradient algorithm for equilibrium problems on Hadamard manifolds [J].
Fan, Jingjing ;
Tan, Bing ;
Li, Songxiao .
COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (02)
[20]   Proximal point algorithm on Riemannian manifolds [J].
Ferreira, OP ;
Oliveira, PR .
OPTIMIZATION, 2002, 51 (02) :257-270