A simple proximal algorithm based on the golden ratio for equilibrium problem on Hadamard manifolds

被引:1
作者
Oyewole, O. K. [1 ]
Abass, H. A. [2 ]
Moshokoa, S. P. [1 ]
机构
[1] Tshwane Univ Technol, Dept Math & Stat, Arcadia,PMB 0007, Pretoria, South Africa
[2] Sefako Makgatho Hlth Sci Univ, ZA-0204 Pretoria, South Africa
关键词
Equilibrium problem; golden ratio; Hadamard manifold; modified proximal; pseudomonotone operator; EXTRAGRADIENT ALGORITHMS; POINT ALGORITHM; CONVERGENCE; EXISTENCE;
D O I
10.1007/s12215-024-01183-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we propose a simple proximal method which is combined with the inertial and golden ratio technique as extrapolation methods for approximating a solution to the equilibrium problem. The proposed method is self-adaptive such that its execution does not depend on the knowledge of the Lipschitz condition of the associated pseudomonotone cost operator. Under mild and standard assumptions on the control parameters, we showed that the sequence of iterates generated by this method converges to a solution of the problem. Assuming that the cost operator is strongly pseudomonotone, we prove that the sequence of iterates converge R-linearly to a solution of the EP. To show the numerical efficiency of this proposed method, we displayed some numerical experiments.
引用
收藏
页数:25
相关论文
共 55 条
[1]   An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping [J].
Alvarez, F ;
Attouch, H .
SET-VALUED ANALYSIS, 2001, 9 (1-2) :3-11
[2]  
[Anonymous], 2017, T A RAZMADZE MATH IN, V171, P381, DOI DOI 10.1016/j.trmi.2017.04.001
[3]  
Ansari QH, 2020, J NONLINEAR CONVEX A, V21, P425
[4]   An extragradient method for non-monotone equilibrium problems on Hadamard manifolds with applications [J].
Babu, Feeroz ;
Ali, Akram ;
Alkhaldi, Ali H. .
APPLIED NUMERICAL MATHEMATICS, 2022, 180 :85-103
[5]   Proximal point method for a special class of nonconvex functions on Hadamard manifolds [J].
Bento, G. C. ;
Ferreira, O. P. ;
Oliveira, P. R. .
OPTIMIZATION, 2015, 64 (02) :289-319
[6]  
Blum E., 1994, Math. Stud., V63, P123
[7]  
Bridson M. R., 1999, Metric Spaces of Non-Positive Curvature, DOI DOI 10.1007/978-3-662-12494-9
[8]  
Chang XK, 2022, SIAM J OPTIMIZ, V32, P1584, DOI 10.1137/21M1420319
[9]   A Golden Ratio Primal-Dual Algorithm for Structured Convex Optimization [J].
Chang, Xiaokai ;
Yang, Junfeng .
JOURNAL OF SCIENTIFIC COMPUTING, 2021, 87 (02)
[10]   Extragradient method and golden ratio method for equilibrium problems on Hadamard manifolds [J].
Chen, Junfeng ;
Liu, Sanyang ;
Chang, Xiaokai .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2021, 98 (08) :1699-1712