On shifted convolution sums of general divisor problem of Hecke eigenvalues

被引:0
作者
Hua, Guodong [1 ,2 ]
机构
[1] Weinan Normal Univ, Sch Math & Stat, Chaoyang Middle St, Weinan 714099, Peoples R China
[2] Weinan Normal Univ, Res Inst Qindong Math, Chaoyang Middle St, Weinan 714099, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier coefficients of automorphic forms; Rankin-Selberg L-functions; Shifted convolutions; Langlands program; FOURIER COEFFICIENTS; SQUARE;
D O I
10.1007/s11139-024-00964-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f be a normalized primitive holomorphic cusp form of even integral weight kappa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} for the full modular group Gamma=SL(2,Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma =SL(2,\mathbb {Z})$$\end{document}. In this paper, we are interested in the averages of shifted convolution sums associated to general divisor sums involving the higher power moments of Hecke eigenvalues attached to f. We also obtain the analogous result for the coefficients of the Hecke-Maass cusp forms on Gamma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} under suitable assumptions.
引用
收藏
页码:14 / 18
页数:5
相关论文
共 38 条
[1]  
[Anonymous], 1999, P S PURE MATH
[2]   A Family of Calabi-Yau Varieties and Potential Automorphy II [J].
Barnet-Lamb, Tom ;
Geraghty, David ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) :29-98
[3]   Shifted convolution sums and subconvexity bounds for automorphic L-functions [J].
Blomer, V .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2004, 2004 (73) :3905-3926
[4]  
Deligne P., 1974, Inst. Hautes Etudes Sci. Publ. Math., V43, P273
[5]   BOUNDS FOR AUTOMORPHIC L-FUNCTIONS [J].
DUKE, W ;
FRIEDLANDER, J ;
IWANIEC, H .
INVENTIONES MATHEMATICAE, 1993, 112 (01) :1-8
[6]  
GELBART S, 1978, ANN SCI ECOLE NORM S, V11, P471
[7]   THE SQUARE MEAN OF DIRICHLET SERIES ASSOCIATED WITH CUSP FORMS [J].
GOOD, A .
MATHEMATIKA, 1982, 29 (58) :278-295
[8]   The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points.: II [J].
Harcos, G ;
Michel, P .
INVENTIONES MATHEMATICAE, 2006, 163 (03) :581-655
[9]  
Hua GD., 2024, Math. Pannon. (N.S.), V30, P41, DOI [10.1556/314.2024.00003, DOI 10.1556/314.2024.00003]
[10]   ESTIMATES FOR CERTAIN SHIFTED CONVOLUTION SUMS INVOLVING HECKE EIGENVALUES [J].
Hua, Guodong .
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 38 (02) :319-330