Appraisal of the physio-biochemical efficacy of exogenously applied natural and synthetic sources of plant growth stimulants in modulating drought stress tolerance in maize (Zea mays L.)

被引:0
|
作者
Ahmad, Abrar [1 ]
Akram, Nudrat Aisha [1 ]
Ashraf, Muhammad [2 ]
机构
[1] Govt Coll Univ, Dept Bot, Faisalabad 38000, Pakistan
[2] Univ Lahore, Inst Mol Biol & Biotechnol, Lahore, Pakistan
关键词
Drought tolerance; Riboflavin; Thiamin; Natural plant growth stimulant; Moringa leaf extract; Maize; BRASSICA-NAPUS L; OXIDATIVE DEFENSE SYSTEM; ABIOTIC STRESS; ASCORBIC-ACID; GLYCINE BETAINE; PROLINE; ATTRIBUTES; METABOLISM; THIAMINE; YIELD;
D O I
10.1007/s11738-024-03758-1
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Phytoextracts as a cheap source of growth promoters as well as synthetic chemicals are being widely used these days to treat plants subjected to stress conditions. To compare the effects of natural growth regulators and synthetic ones, a pot experiment was conducted using natural [moringa leaf extract (MLE)] and synthetic (vitamins B1 and B2) sources to appraise the mitigating of drought-induced adverse effects on maize (Zea mays L.) plants. Seeds of both differentials stress tolerant maize cultivars (YH-1898 and Sahiwal Gold) were primed with natural (MLE), synthetic (thiamin and riboflavin), and their combination (MLE, thiamin, and riboflavin) and subjected to 100% field capacity [F.C. (control)] and 60% F.C. (drought) conditions. Drought stress (60% F.C.) significantly decreased plant biomass and total soluble proteins (TSP), whereas no significant alteration was observed in chlorophyll contents. However, in contrast, it improved glycine betaine (GB), proline, hydrogen peroxide (H2O2), malondialdehyde (MDA), total phenolics, and ascorbic acid as well as the activities of superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD) enzymes in both maize cultivars. Priming seeds with different sources enhanced growth attributes, chlorophyll pigments, osmolyte concentration, total phenolics, ascorbic acid, and the activities of reactive oxygen species (ROS) scavenging enzymes (SOD, POD, and CAT), but it reduced the accumulation of H2O2 and MDA. Overall, a natural source, MLE as a plant growth regulator, remarkably reduced the adverse effects of drought stress and enhanced the growth of maize cultivars, whereas riboflavin among the synthetic PGRs was more effective in upregulating the oxidative defense and osmoprotectant accumulation.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] SELECTION OF SCREENING CRITERIA AGAINST DROUGHT STRESS AT EARLY GROWTH STAGES IN MAIZE (Zea mays L.)
    Ramzan, Javeria
    Aslam, Muhammad
    Ahsan, Muhammad
    Awan, Faisal Saeed
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2019, 56 (03): : 633 - 643
  • [22] The effects of exogenous ABA applied to maize (Zea mays L.) roots on plant responses to chilling stress
    Tian, Li-xin
    Li, Jing
    ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (04)
  • [23] Response of Maize (Zea mays L.) to Foliar-Applied Nanoparticles of Zinc Oxide and Manganese Oxide Under Drought Stress
    Kathirvelan, Perumal
    Vaishnavi, Sonam
    Manivannan, Venkatesan
    Djanaguiraman, M.
    Thiyageshwari, S.
    Parasuraman, P.
    Kalarani, M. K.
    PLANTS-BASEL, 2025, 14 (05):
  • [24] Changes in Growth and Nutrient Status of Maize (Zea mays L.) in Response to Two Zinc Sources Under Drought Stress
    Weisany, Weria
    Mohammadi, Maryam
    Tahir, Nawroz Abdul-razzak
    Aslanian, Natasha
    Omer, Dlshad Ali
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2021, 21 (04) : 3367 - 3377
  • [25] Interactive Effect of Drought Stress and <sc>l</sc>-Methionine on the Growth and Physio-Biochemical Changes in Broccoli (Brassica oleracea L. var. italica): Leaf and Head
    Akram, Nudrat Aisha
    Fatima, Kaneez
    Kong, Haiyan
    Zafar, Nimra
    Mahmood, Seema
    Ashraf, Muhammad
    Abdel Latef, Arafat Abdel Hamed
    JOURNAL OF PLANT GROWTH REGULATION, 2024, 43 (06) : 1954 - 1966
  • [26] Exogenously applied nitric oxide confers tolerance to salinity-induced oxidative stress in two maize (Zea mays L.) cultivars differing in salinity tolerance
    Kaya, Cengiz
    Ashraf, Muhammed
    Sonmez, Osman
    Tuna, Atilla Levent
    Aydemir, Salih
    TURKISH JOURNAL OF AGRICULTURE AND FORESTRY, 2015, 39 (06) : 909 - 919
  • [27] Impact of drought stress on biochemical responses, energy, and water productivity on maize forage (Zea mays L.)
    Rad, Rouhollah Daneshvar
    Sharifabad, Hosein Heidari
    Torabi, Masoud
    Azizinejad, Reza
    Salemi, Hamidreza
    Soltanabadi, Mohsen Heidari
    SN APPLIED SCIENCES, 2021, 3 (11):
  • [28] Recent Advances for Drought Stress Tolerance in Maize (Zea mays L.): Present Status and Future Prospects
    Sheoran, Seema
    Kaur, Yashmeet
    Kumar, Sushil
    Shukla, Shanu
    Rakshit, Sujay
    Kumar, Ramesh
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [29] Foliar application of ascorbate enhances the physiological and biochemical attributes of maize (Zea mays L.) cultivars under drought stress
    Noman, Ali
    Ali, Shafaqat
    Naheed, Fomia
    Ali, Qasim
    Farid, Mujahid
    Rizwan, Muhammad
    Irshad, Muhammad Kashif
    ARCHIVES OF AGRONOMY AND SOIL SCIENCE, 2015, 61 (12) : 1659 - 1672
  • [30] Influence of Drought Applied at Different Growth Stages on Kernel Yield and Quality in Maize (Zea Mays L.)
    Anwar, Saba
    Iqbal, Muhammad
    Akram, Hafiz Muhammad
    Niaz, Mubashir
    Rasheed, Rizwan
    COMMUNICATIONS IN SOIL SCIENCE AND PLANT ANALYSIS, 2016, 47 (19) : 2225 - 2232