Ku70 silencing aggravates oxygen-glucose deprivation/reperfusion-induced injury by activation of the p53 apoptotic pathway in rat cortical astrocytes

被引:0
|
作者
Xie, Xiaoyun [1 ]
Liu, Jingli [1 ]
机构
[1] Guangxi Med Univ, Affiliated Hosp 1, Dept Neurol, 6 ShuangYong Rd, Nanning 530021, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Ku70; Astrocytes; OGD/R; p53 apoptotic pathway; DNA-DAMAGE; EXPRESSION; ISCHEMIA; KINASE;
D O I
10.1007/s00418-024-02352-3
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Oxidative stress-induced DNA damage is an important mechanism that leads to the death of neuronal cells after ischemic stroke. Our previous study found that Ku70 was highly expressed in ischemic brain tissue of rats after cerebral ischemia-reperfusion injury. However, the role of Ku70 in glucose-oxygen deprivation/reperfusion (OGD/R) in astrocytes has not been reported. Therefore, we investigated the effect and mechanism of Ku70 on OGD/R-induced astrocyte injury in rats. Rat astrocytes were cultured in vitro to establish the OGD/R-induced injury model and transfected with small interfering RNA (siRNA) to disturb Ku70 expression. Real-time quantitative polymerase chain reaction (RT-qPCR), western blotting, and immunofluorescence were performed to assay the expression of mRNA and proteins. Cell viability, apoptosis, and ROS accumulation were determined by CCK-8 assay, flow cytometry, and fluorescence microscopy, respectively. Our results showed Ku70 can be expressed in both the nucleus and cytoplasm of astrocytes, although mainly in the nucleus. Ku70 expression showed a trend of first increasing and then decreasing after OGD/R, reaching its highest change at 24 h of reoxygenation. OGD/R induced ROS production and DNA damage in rat astrocytes, and Ku70 silencing further increased ROS production and DNA lesions, which aggravated astrocyte injury and apoptosis. Furthermore, the expression of p53, Bax, and caspase 3 proteins significantly increased after OGD/R in astrocytes, and downregulation of Ku70 further enhanced expression of the above proteins. These results indicate that Ku70 silencing promotes OGD/R-induced astrocyte apoptosis, which may be associated with p53 apoptotic pathway activation. Our study suggests that Ku70 may be a novel target for cerebral ischemia-reperfusion injury therapy.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Cryptotanshinone protects hippocampal neurons against oxygen-glucose deprivation-induced injury through the activation of Nrf2/HO-1 signaling pathway
    Xu, Dong
    Gui, Chengli
    Zhao, Haiyan
    Liu, Fengli
    FOOD SCIENCE AND TECHNOLOGY, 2022, 42
  • [32] Panax notoginseng Saponins Protect Cerebral Microvascular Endothelial Cells against Oxygen-Glucose Deprivation/Reperfusion-Induced Barrier Dysfunction via Activation of PI3K/Akt/Nrf2 Antioxidant Signaling Pathway
    Hu, Shaonan
    Wu, Yali
    Zhao, Bo
    Hu, Haiyan
    Zhu, Baochen
    Sun, Zongxi
    Li, Pengyue
    Du, Shouying
    MOLECULES, 2018, 23 (11):
  • [33] Neuroprotective Effects of Pycnogenol Against Oxygen-Glucose Deprivation/Reoxygenation-Induced Injury in Primary Rat Astrocytes via NF-κB and ERK1/2 MAPK Pathways
    Xia, Ruixue
    Ji, Chunxue
    Zhang, Leguo
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 42 (03) : 987 - 998
  • [34] Circ_0000647 promotes cell injury by modulating miR-126-5p/TRAF3 axis in oxygen-glucose deprivation and reperfusion-induced SK-N-SH cell model
    Dai, Yuanqiang
    Sheng, Ying
    Deng, Yu
    Wang, Heng
    Zhao, Zhenzhen
    Yu, Xiya
    Xu, Tao
    INTERNATIONAL IMMUNOPHARMACOLOGY, 2022, 104
  • [35] Calycosin-7-O-β-D-glucoside downregulates mitophagy by mitigating mitochondrial fission to protect HT22 cells from oxygen-glucose deprivation/reperfusion-induced injury
    Yan, Xiangli
    Quan, Siqi
    Guo, Roujia
    Li, Zibo
    Bai, Ming
    Wang, Baoying
    Su, Pan
    Xu, Erping
    Li, Yucheng
    MOLECULAR MEDICINE REPORTS, 2025, 31 (03)
  • [36] Che-1 inhibits oxygen-glucose deprivation/reoxygenation-induced neuronal apoptosis associated with inhibition of the p53-mediated proapoptotic signaling pathway
    Guo, Shenglong
    Chen, Ruili
    Chen, Xiaoli
    Xie, Zhen
    Huo, Fangfang
    Wu, Zhongliang
    NEUROREPORT, 2018, 29 (14) : 1193 - 1200
  • [37] MiR-125b blocks Bax/Cytochrome C/Caspase-3 apoptotic signaling pathway in rat models of cerebral ischemia-reperfusion injury by targeting p53
    Xie, Yun-Liang
    Zhang, Bo
    Jing, Ling
    NEUROLOGICAL RESEARCH, 2018, 40 (10) : 828 - 837
  • [38] MIR22HG Aggravates Oxygen-Glucose Deprivation and Reoxygenation-Induced Cardiomyocyte Injury through the miR-9-3p/SH2B3 Axis
    Ge, Yi
    Liu, Lishi
    Luo, Liang
    Fang, Yu
    Ni, Tong
    CARDIOVASCULAR THERAPEUTICS, 2022, 2022
  • [39] Down-regulation of microRNA-142-5p attenuates oxygen-glucose deprivation and reoxygenation-induced neuron injury through up-regulating Nrf2/ARE signaling pathway
    Wang, Ning
    Zhang, Lingmin
    Lu, Yang
    Zhang, Mingxin
    Zhang, Zhenni
    Wang, Kui
    Lv, Jianrui
    BIOMEDICINE & PHARMACOTHERAPY, 2017, 89 : 1187 - 1195
  • [40] Shionone relieves oxygen-glucose deprivation/reoxygenation induced SH-SY5Y cells injury by inhibiting the p38 MAPK/NF-κB pathway
    Zhou, Xiaoli
    Luo, Xueting
    JOURNAL OF CARDIOTHORACIC SURGERY, 2024, 19 (01)