Genome-wide profiling of bZIP transcription factors in Camelina sativa: implications for development and stress response

被引:0
|
作者
Rahman, Shahroz [1 ]
Ikram, Abdul Rehman [1 ]
AlHusnain, Latifa [2 ]
Fiaz, Sajid [3 ]
Rafique, Muhammad Umar [1 ]
Ali, Muhammad Amjad [4 ]
AlKahtani, Muneera D. F. [2 ]
Attia, Kotb A. [5 ]
Azeem, Farrukh [1 ]
机构
[1] Govt Coll Univ, Dept Bioinformat & Biotechnol, Faisalabad, Pakistan
[2] Princess Nourah Bint Abdulrahman Univ, Coll Sci, Dept Biol, POB 84428, Riyadh 11671, Saudi Arabia
[3] Univ Lahore, Inst Mol Biol & Biotechnol, Lahore 54590, Pakistan
[4] Univ Agr Faisalabad, Dept Plant Pathol, Faisalabad 38040, Pakistan
[5] King Saud Univ, Ctr Excellence Biotechnol Res, POB 2455, Riyadh 11451, Saudi Arabia
来源
BMC GENOMIC DATA | 2024年 / 25卷 / 01期
关键词
Crop resilience; Flax; Stress response; Transcriptomics; Phylogenetic analysis; EXPRESSION ANALYSIS; FACTOR FAMILY; GENES;
D O I
10.1186/s12863-024-01270-6
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background The bZIP transcription factor family, characterized by a bZIP domain, plays vital roles in plant stress responses and development. While this family has been extensively studied in various plant species, its specific functions in Camelina sativa (False Flax) remain underexplored. Methods and results This study identified 71 bZIP transcription factors in C. sativa, classified into nine distinct groups based on phylogenetic analysis. Subcellular localization predicted a nucleus-specific expression for these bZIPs. Analysis of GRAVY scores revealed a range from 0.469 to -1.256, indicating a spectrum from hydrophobic to hydrophilic properties. Motif analysis uncovered 10 distinct motifs, with one motif being universally present in all CsbZIPs. Conserved domain analysis highlighted several domains beyond the core bZIP domain. Protein-protein interaction predictions suggested a robust network involving CsbZIPs. Moreover, promoter analysis revealed over 60 types of cis-elements, including those responsive to stress. Expression studies through RNA-seq and Real-time RT-qPCR demonstrated high expression of CsbZIPs in roots, leaves, flowers, and stems. Specifically, CsbZIP01, CsbZIP02, CsbZIP44, and CsbZIP60 were consistently up-regulated under cold, salt, and drought stresses, whereas CsbZIP34 and CsbZIP35 were down-regulated. Conclusion This study presents the first comprehensive genome-wide profiling of bZIP transcription factors in Camelina sativa, providing novel insights into their roles in plant development and stress response mechanisms. By identifying and characterizing the bZIP gene family in C. sativa, this research offers new opportunities for improving stress tolerance and crop resilience through targeted genetic approaches, addressing key challenges in agriculture under changing environmental conditions.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Genome-wide exploration of bZIP transcription factors and their contribution to alkali stress response in Helianthus annuus
    Rahman, Shahroz
    Rehman, Abdul
    Waqas, Muhammad
    Mubarik, Muhammad Salman
    Alwutayd, Khairiah
    Abdelgawad, Hamada
    Jalal, Arshad
    Azeem, Farrukh
    Rizwan, Muhammad
    PLANT STRESS, 2023, 10
  • [2] The bZIP transcription factors in Liriodendron chinense: Genome-wide recognition, characteristics and cold stress response
    Li, Mingyue
    Hwarari, Delight
    Li, Yang
    Ahmad, Baseer
    Min, Tian
    Zhang, Wenting
    Wang, Jinyan
    Yang, Liming
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [3] Genome-Wide Analysis of the bZIP Transcription Factors in Cucumber
    Baloglu, Mehmet Cengiz
    Eldem, Vahap
    Hajyzadeh, Mortaza
    Unver, Turgay
    PLOS ONE, 2014, 9 (04):
  • [4] Genome-wide identification of bZIP transcription factors and their responses to abiotic stress in celery
    Yang, Qing-Qing
    Feng, Kai
    Xu, Zhi-Sheng
    Duan, Ao-Qi
    Liu, Jie-Xia
    Xiong, Ai-Sheng
    BIOTECHNOLOGY & BIOTECHNOLOGICAL EQUIPMENT, 2019, 33 (01) : 707 - 718
  • [5] Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut
    Zhihui Wang
    Liying Yan
    Liyun Wan
    Dongxin Huai
    Yanping Kang
    Lei Shi
    Huifang Jiang
    Yong Lei
    Boshou Liao
    BMC Genomics, 20
  • [6] Genome-wide systematic characterization of bZIP transcription factors and their expression profiles during seed development and in response to salt stress in peanut
    Wang, Zhihui
    Yan, Liying
    Wan, Liyun
    Huai, Dongxin
    Kang, Yanping
    Shi, Lei
    Jiang, Huifang
    Lei, Yong
    Liao, Boshou
    BMC GENOMICS, 2019, 20 (1)
  • [7] Genome-Wide Analysis of bZIP Transcription Factors and Expression Patterns in Response to Salt and Drought Stress in Vaccinium corymbosum
    Feng, Xinghua
    Wang, Chuchu
    Jia, Sijin
    Wang, Jiaying
    Zhou, Lianxia
    Song, Yan
    Guo, Qingxun
    Zhang, Chunyu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2025, 26 (02)
  • [8] Genome-wide characterization of bZIP transcription factors and their expression patterns in response to drought and salinity stress in Jatropha curcas
    Wang, Zhanjun
    Zhu, Jin
    Yuan, Wenya
    Wang, Ying
    Hu, Peipei
    Jiao, Chunyan
    Xia, Haimeng
    Wang, Dandan
    Cai, Qianwen
    Li, Jie
    Wang, Chenchen
    Zhang, Xie
    Chen, Yansong
    Wang, Zhaoxia
    Ou, Zulan
    Xu, Zhongdong
    Shi, Jisen
    Chen, Jinhui
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 181 : 1207 - 1223
  • [9] Genome-Wide Identification and Expression Analysis of bZIP Transcription Factors Under Salt Stress in Chrysanthemum
    Guo, Yanchao
    Ji, Kexin
    Jia, Zhongqi
    Aiwaili, Palinuer
    Liu, Lin
    Ren, Haoran
    Liu, Qinglin
    Jiang, Yunhe
    Gao, Junping
    Xu, Yanjie
    HORTICULTURAE, 2024, 10 (12)
  • [10] Genome-Wide Identification and Characterization of bZIP Transcription Factors in Brassica oleracea under Cold Stress
    Hwang, Indeok
    Manoharan, Ranjith Kumar
    Kang, Jong-Goo
    Chung, Mi-Young
    Kim, Young-Wook
    Nou, Ill-Sup
    BIOMED RESEARCH INTERNATIONAL, 2016, 2016