Numerical investigation of aluminum-silicon solidification in a novel high temperature latent heat thermal energy storage system

被引:0
|
作者
Alemam, Asem [1 ]
Eveloy, Valerie [1 ,2 ]
Afgan, Imran [1 ]
机构
[1] Khalifa Univ Sci & Technol, Coll Engn, Dept Mech & Nucl Engn, POB 127788, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Virtual Res Inst Sustainable Energy Prod & Utiliza, Abu Dhabi, U Arab Emirates
关键词
Computational fluid dynamics (CFD); Enthalpy-porosity method; Heat transfer fluid (HTF); Liquid metals; Phase change material (PCM); Solidification process; PHASE-CHANGE MATERIALS; TRANSFER FLUID; LIQUID-METALS; PERFORMANCE; PCM; TUBE; ENHANCEMENT; NANOPARTICLES; SODIUM;
D O I
10.1016/j.est.2025.115767
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy storage plays a critical role in facilitating the integration of intermittent renewable energy sources into contemporary energy systems. This study presents a comprehensive numerical investigation of the solidification process of an Aluminum-Silicon (88Al 12Si) metal alloy phase change material (PCM) in a state-of-the-art latent heat thermal energy storage (LHTES) system, utilizing liquid sodium as heat transfer fluid (HTF). A threedimensional (3-D) computational fluid dynamics (CFD) model using the time-dependent enthalpy-porosity method is developed to predict temperature distributions, PCM melt fraction, heat flux, and Nusselt number at the HTF-PCM tank interface. The HTF outlet temperature is found to be within +/- 5 degrees C (1 %) of corresponding experimental data. Using the validated CFD model, the effects of HTF selection, inlet velocity, and inlet temperature on PCM solidification are analyzed. Heat transfer within the PCM is found to be predominantly diffusion driven. The modeled LHTES system discharge efficiency is evaluated at 93.5 %, primarily due to the high thermal conductivity of the 88Al 12Si PCM, which enables the use of a simple geometric design without additional heat transfer enhancement apparatus. Relative to the existing reference system prototype design, potential reduction of up to 61 % in solidification time and enhancement of the thermohydraulic performance by a factor of 3.4 may be obtained using a reduced HTF inlet temperature (i.e., 400 degrees C instead of 527 degrees C). The results also suggest further thermofluid improvements using lithium or gallium as HTFs.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Prototype latent heat storage system with aluminum-silicon as a phase change material and a Stirling engine for electricity generation
    Rea, Jonathan E.
    Oshman, Christopher J.
    Singh, Abhishek
    Alleman, Jeff
    Buchholz, Greg
    Parilla, Philip A.
    Adamczyk, Jesse M.
    Fujishin, Helena-Nikolai
    Ortiz, Brenden R.
    Braden, Tara
    Bensen, Erik
    Bell, Robert T.
    Siegel, Nathan P.
    Ginley, David S.
    Toberer, Eric S.
    ENERGY CONVERSION AND MANAGEMENT, 2019, 199
  • [22] A novel liquid air energy storage system integrated with a cascaded latent heat cold thermal energy storage
    Tafone, Alessio
    Romagnoli, Alessandro
    ENERGY, 2023, 281
  • [23] Medium- and high-temperature latent heat thermal energy storage: Material database, system review, and corrosivity assessment
    Zhou, Cheng
    Wu, Sike
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2019, 43 (02) : 621 - 661
  • [24] Numerical investigation of a double-pipe latent heat thermal energy storage with sinusoidal wavy fins during melting and solidification
    Shahsavar, Amin
    Goodarzi, Abbas
    Talebizadehsardari, Pouyan
    Arici, Mulsum
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (15) : 20934 - 20948
  • [25] Thermal transport augmentation in latent heat thermal energy storage system by partially filled metal foam: A novel configuration
    Joshi, Varun
    Rathod, Manish K.
    JOURNAL OF ENERGY STORAGE, 2019, 22 : 270 - 282
  • [26] Numerical investigation of heat transfer characteristics in a shell- and-tube latent heat thermal energy storage system
    Yang, Zhishun
    Chen, Lihua
    Li, Yang
    Xia, Zhenhua
    Wang, Caixia
    2ND INTERNATIONAL CONFERENCE ON ENERGY AND POWER (ICEP2018), 2019, 160 : 475 - 482
  • [27] Numerical Simulations of Latent Heat Thermal Energy Storage Utilizing Double Inclined Fin
    Saldi, Zaki S.
    Prabowo, Bayu
    Buana, Indra
    Diguna, Lina J.
    4TH INTERNATIONAL TROPICAL RENEWABLE ENERGY CONFERENCE (I-TREC 2019), 2020, 2255
  • [28] Heat Transfer in Latent High-Temperature Thermal Energy Storage SystemsExperimental Investigation
    Scharinger-Urschitz, Georg
    Walter, Heimo
    Haider, Markus
    ENERGIES, 2019, 12 (07)
  • [29] Successive melting and solidification of paraffin-alumina nanomaterial in a cavity as a latent heat thermal energy storage
    Farsani, R. Yadollahi
    Raisi, A.
    Mahmoudi, Amirhoushang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2019, 41 (09)
  • [30] Numerical study on latent heat thermal energy storage system with PCM partially filled with aluminum foam in local thermal equilibrium
    Buonomo, Bernardo
    Manca, Oronzio
    Nardini, Sergio
    Plomitallo, Renato Elpidio
    RENEWABLE ENERGY, 2022, 195 : 1368 - 1380