AquaYOLO: Advanced YOLO-based fish detection for optimized aquaculture pond monitoring

被引:1
作者
Vijayalakshmi, M. [1 ]
Sasithradevi, A. [2 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Chennai 600127, India
[2] Vellore Inst Technol, Ctr Adv Data Sci, Chennai 600127, India
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Fish Detection; Hierarchical features; Aquaculture Monitoring; Deep Learning; YOLO;
D O I
10.1038/s41598-025-89611-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aquaculture plays an important role in ensuring global food security, supporting economic growth, and protecting natural resources. However, traditional methods of monitoring aquatic environments are time-consuming and labor-intensive. To address this, there is growing interest in using computer vision for more efficient aqua monitoring. Fish detection is a key challenging step in these vision-based systems, as it faces challenges such as changing light conditions, varying water clarity, different types of vegetation, and dynamic backgrounds. To overcome these challenges, we introduce a new model called AquaYOLO, an optimized model specifically designed for aquaculture applications. The backbone of AquaYOLO employs CSP layers and enhanced convolutional operations to extract hierarchical features. The head enhances feature representation through upsampling, concatenation, and multi-scale fusion. The detection head uses a precise 40 x 40 scale for box regression and dropping the final C2f layer to ensure accurate localization. To test the AquaYOLO model, we utilize DePondFi dataset (Detection of Pond Fish) collected from aquaponds in South India. DePondFi dataset contains around 50k bounding box annotations across 8150 images. Proposed AquaYOLO model performs well, achieving a precision, recall and mAP@50 of 0.889, 0.848, and 0.909 respectively. Our model ensures efficient and affordable fish detection for small-scale aquaculture.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection
    U. Sirisha
    S. Phani Praveen
    Parvathaneni Naga Srinivasu
    Paolo Barsocchi
    Akash Kumar Bhoi
    International Journal of Computational Intelligence Systems, 16
  • [32] Clothing Detection and Classification with Fine-Tuned YOLO-Based Models
    Nguyen, Hai T.
    Nguyen, Khanh K.
    Diem, Pham T-N
    Dien, Tran T.
    ADVANCES AND TRENDS IN ARTIFICIAL INTELLIGENCE. THEORY AND APPLICATIONS, IEA/AIE 2023, PT I, 2023, 13925 : 127 - 132
  • [33] Statistical Analysis of Design Aspects of Various YOLO-Based Deep Learning Models for Object Detection
    Sirisha, U.
    Praveen, S. Phani
    Srinivasu, Parvathaneni Naga
    Barsocchi, Paolo
    Bhoi, Akash Kumar
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2023, 16 (01)
  • [34] YOLO-based Threat Object Detection in X-ray Images
    Galvez, Reagan L.
    Dadios, Elmer P.
    Bandala, Argel A.
    Vicerra, Ryan Rhay P.
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [35] CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images
    Xie, Siyu
    Zhou, Mei
    Wang, Chunle
    Huang, Shisheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 388 - 399
  • [36] YOLO-OHFD: A YOLO-Based Oriented Hair Follicle Detection Method for Robotic Hair Transplantation
    Wang, Hui
    Liu, Xin
    APPLIED SCIENCES-BASEL, 2025, 15 (06):
  • [37] YOLO-based detection of Halyomorpha halys in orchards using RGB cameras and drones
    Sorbelli, Francesco Betti
    Palazzetti, Lorenzo
    Pinotti, Cristina M.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [38] PETNet: A YOLO-based prior enhanced transformer network for aerial image detection
    Wang, Tianyu
    Ma, Zhongjing
    Yang, Tao
    Zou, Suli
    NEUROCOMPUTING, 2023, 547
  • [39] YOLO-Tryppa: A Novel YOLO-Based Approach for Rapid and Accurate Detection of Small Trypanosoma Parasites
    Mura, Davide Antonio
    Zedda, Luca
    Loddo, Andrea
    Di Ruberto, Cecilia
    JOURNAL OF IMAGING, 2025, 11 (04)
  • [40] Yolo-based power-efficient object detection on edge devices for USVs
    Mela, Jose Luis
    Sanchez, Carlos Garcia
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2025, 22 (03)