AquaYOLO: Advanced YOLO-based fish detection for optimized aquaculture pond monitoring

被引:1
|
作者
Vijayalakshmi, M. [1 ]
Sasithradevi, A. [2 ]
机构
[1] Vellore Inst Technol, Sch Elect Engn, Chennai 600127, India
[2] Vellore Inst Technol, Ctr Adv Data Sci, Chennai 600127, India
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
Fish Detection; Hierarchical features; Aquaculture Monitoring; Deep Learning; YOLO;
D O I
10.1038/s41598-025-89611-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aquaculture plays an important role in ensuring global food security, supporting economic growth, and protecting natural resources. However, traditional methods of monitoring aquatic environments are time-consuming and labor-intensive. To address this, there is growing interest in using computer vision for more efficient aqua monitoring. Fish detection is a key challenging step in these vision-based systems, as it faces challenges such as changing light conditions, varying water clarity, different types of vegetation, and dynamic backgrounds. To overcome these challenges, we introduce a new model called AquaYOLO, an optimized model specifically designed for aquaculture applications. The backbone of AquaYOLO employs CSP layers and enhanced convolutional operations to extract hierarchical features. The head enhances feature representation through upsampling, concatenation, and multi-scale fusion. The detection head uses a precise 40 x 40 scale for box regression and dropping the final C2f layer to ensure accurate localization. To test the AquaYOLO model, we utilize DePondFi dataset (Detection of Pond Fish) collected from aquaponds in South India. DePondFi dataset contains around 50k bounding box annotations across 8150 images. Proposed AquaYOLO model performs well, achieving a precision, recall and mAP@50 of 0.889, 0.848, and 0.909 respectively. Our model ensures efficient and affordable fish detection for small-scale aquaculture.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Using YOLO-Based Pedestrian Detection for Monitoring UAV
    Zhang, Depei
    Shao, Yanhua
    Mei, Yanying
    Chu, Hongyu
    Zhang, Xiaoqiang
    Zhan, Huayi
    Rao, Yunbo
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [2] YOLO-based microglia activation state detection
    Liu, Jichi
    Li, Wei
    Lyu, Houkun
    Qi, Feng
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (16) : 24413 - 24434
  • [3] A Yolo-based Violence Detection Method in IoT Surveillance Systems
    Gao, Hui
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (08) : 143 - 149
  • [4] Experimental Study on YOLO-Based Leather Surface Defect Detection
    Chen, Zhiqiang
    Zhu, Qirui
    Zhou, Xiaofan
    Deng, Jiehang
    Song, Wei
    IEEE ACCESS, 2024, 12 : 32830 - 32848
  • [5] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574
  • [6] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [7] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [8] Comparison of YOLO-based sorghum spike identification detection models and monitoring at the flowering stage
    Zhang, Song
    Yang, Yehua
    Tu, Lei
    Fu, Tianling
    Chen, Shenxi
    Cen, Fulang
    Yang, Sanwei
    Zhao, Quanzhi
    Gao, Zhenran
    He, Tengbing
    PLANT METHODS, 2025, 21 (01)
  • [9] YOLO-Based Models for Smoke and Wildfire Detection in Ground and Aerial Images
    Goncalves, Leon Augusto Okida
    Ghali, Rafik
    Akhloufi, Moulay A.
    FIRE-SWITZERLAND, 2024, 7 (04):
  • [10] Breast Lesions Detection and Classification via YOLO-Based Fusion Models
    Baccouche, Asma
    Garcia-Zapirain, Begonya
    Olea, Cristian Castillo
    Elmaghraby, Adel S.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (01): : 1407 - 1425