Genome-wide identification of the AAT gene family in quinoa and analysis of its expression pattern under abiotic stresses

被引:0
|
作者
Li, Hanxue [1 ]
Jiang, Chunhe [2 ]
Liu, Junna [1 ]
Zhang, Ping [1 ]
Li, Li [1 ]
Li, Rongbo [3 ]
Huang, Liubin [1 ]
Wang, Xuqin [1 ]
Jiang, Guofei [1 ]
Bai, Yutao [1 ]
Zhang, Lingyuan [1 ]
Qin, Peng [1 ]
机构
[1] Yunnan Agr Univ, Coll Agron & Biotechnol, Kunming 650201, Peoples R China
[2] Yunnan Agr Univ, Acad Affairs Off, Kunming 650201, Peoples R China
[3] Kunming Acad Agr Sci, Kunming 650201, Peoples R China
来源
BMC GENOMICS | 2025年 / 26卷 / 01期
关键词
Quinoa; AAT; Abiotic stresses; Bioinformatics; Gene expression; AMINO-ACID TRANSPORTER; COMPATIBLE SOLUTE TRANSPORTERS; PROLINE; METABOLISM; LOCALIZATION; SPECIFICITY; DATABASE; YIELD; GRAIN;
D O I
10.1186/s12864-025-11491-3
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
BackgroundPlant amino acid transporters play an important role in the absorption of soil amino acids by roots, the transport of amino acids between xylem and phloem, plant growth and development, and response to abiotic stress.ResultIn this study, we identified 147 AAT genes in the quinoa genome sequence and categorized them into 12 subfamilies on the basis of their similarity and phylogenetic relationships with AAT found in Arabidopsis thaliana. Interestingly, these AAT genes are not evenly distributed on the quinoa chromosomes. Instead, most of these genes are centrally located on the outer edges of the chromosome arms. After performing motif analysis and gene structure analysis, we observed the consistent presence of similar motifs and intron-exon distribution patterns among subfamilies. Tissue expression analysis revealed that CqAAT gene was less expressed in fruits and more expressed in roots, stems, leaves and flowers. Meanwhile, expression analysis under four adversities of high temperature, low temperature, waterlogging, and drought and different treatments of nitrogen, phosphorus, and potash fertilizers found that two genes of the CqGAT subfamily, AUR62031750 and AUR62023955 were up-regulated expressed under abiotic stresses.ConclusionsIn summary, there is a significant differentiation in the tissue expression and stress expression of the CqAAT gene, indicating that CqAATs play a role in regulating growth and development under abiotic stress.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Genome-wide identification of WRKY gene family and expression analysis under abiotic stresses in Andrographis paniculata
    Wang, Qichao
    Zeng, Wujing
    Ali, Basharat
    Zhang, Xuemin
    Xu, Ling
    Liang, Zongsuo
    BIOCELL, 2021, 45 (04) : 1107 - 1119
  • [2] Genome-wide identification of NAC gene family and expression analysis under abiotic stresses in Salvia miltiorrhiza
    Li, Xin
    Pan, Jianmin
    Islam, Faisal
    Li, Juanjuan
    Hou, Zhuoni
    Yang, Zongqi
    Xu, Ling
    BIOCELL, 2022, 46 (08) : 1947 - 1958
  • [3] Genome-Wide Identification of NAC Gene Family and Expression Analysis under Abiotic Stresses in Avena sativa
    Ling, Lei
    Li, Mingjing
    Chen, Naiyu
    Xie, Xinying
    Han, Zihui
    Ren, Guoling
    Yin, Yajie
    Jiang, Huixin
    GENES, 2023, 14 (06)
  • [4] Genome-Wide Identification of the RALF Gene Family and Expression Pattern Analysis in Zea mays (L.) under Abiotic Stresses
    Xue, Baoping
    Liang, Zicong
    Liu, Yue
    Li, Dongyang
    Liu, Chang
    PLANTS-BASEL, 2024, 13 (20):
  • [5] Genome-wide identification and expression pattern analysis of quinoa BBX family
    Du Xuefen
    Wei, Xiaohong
    Wang, Baoqiang
    Zhu Xiaolin
    Wang Xian
    Luo Jincheng
    PEERJ, 2022, 10
  • [6] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Xiao, Jie
    Hu, Rui
    Gu, Ting
    Han, Jiapeng
    Qiu, Ding
    Su, Peipei
    Feng, Jialu
    Chang, Junli
    Yang, Guangxiao
    He, Guangyuan
    BMC GENOMICS, 2019, 20 (1)
  • [7] Genome-wide identification and expression profiling of trihelix gene family under abiotic stresses in wheat
    Jie Xiao
    Rui Hu
    Ting Gu
    Jiapeng Han
    Ding Qiu
    Peipei Su
    Jialu Feng
    Junli Chang
    Guangxiao Yang
    Guangyuan He
    BMC Genomics, 20
  • [8] Genome-Wide Identification and Expression Analysis of the G-Protein Gene Family in Barley Under Abiotic Stresses
    Han, Ailing
    Xu, Zhengyuan
    Cai, Zhenyu
    Zheng, Yuling
    Chen, Mingjiong
    Wu, Liyuan
    Shen, Qiufang
    PLANTS-BASEL, 2024, 13 (24):
  • [9] Genome-wide identification and expression analysis of the SOD gene family under biotic and abiotic stresses in sweet orange
    Li, Xulin
    Wen, Ke
    Yin, Tuo
    Chen, Chaoying
    Zhu, Ling
    Yang, Xiuyao
    Zi, Yinqiang
    Zhao, Ke
    Zhang, Jiaming
    Zhang, Hanyao
    PLANT BIOTECHNOLOGY REPORTS, 2024, 18 (04) : 535 - 549
  • [10] The HD-ZIP Gene Family in Watermelon: Genome-Wide Identification and Expression Analysis under Abiotic Stresses
    Yan, Xing
    Yue, Zhen
    Pan, Xiaona
    Si, Fengfei
    Li, Jiayue
    Chen, Xiaoyao
    Li, Xin
    Luan, Feishi
    Yang, Jianqiang
    Zhang, Xian
    Wei, Chunhua
    GENES, 2022, 13 (12)