Gradient Estimates and CDpψ (m, K) Curvature for the p-Laplacian on Weighted Graphs

被引:0
作者
Liu, Yongtao [1 ]
机构
[1] Ningxia Univ, Sch Math & Stat, Yinchuan 750021, Peoples R China
来源
FRONTIERS OF MATHEMATICS | 2025年 / 20卷 / 02期
关键词
Gradient estimate; p-Laplacian; CD p (m; K); Harnack inequality;
D O I
10.1007/s11464-022-0268-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the Li-Yau's gradient estimate for the p-Laplacian on weighted graphs. For p >= 2, under the condition of CDp psi(m, K) curvature, we derive a more general type of Li-Yau's gradient estimate for positive solutions to the p-Laplacian heat equation on finite graphs or locally finite graphs with bounded weighted vertex degree. It is parallel to a result of Kotschwar and Ni on manifolds and an outcome of Wang on smooth metric measure spaces. In particular, when p = 2, our estimate deduces to L & uuml; and Wang's result on graphs with the CD psi(m, K) curvature. As an application of our main result, we derive the corresponding Harnack inequality.
引用
收藏
页码:433 / 454
页数:22
相关论文
共 18 条
[1]  
[Anonymous], 1993, Commun. Anal. Geom
[2]  
Bakry D, 1999, REV MAT IBEROAM, V15, P143
[3]  
Bauer F, 2015, J DIFFER GEOM, V99, P359
[4]  
Davies EB., 1989, HEAT KERNELS SPECTRA, DOI 10.1017/CBO9780511566158
[5]  
Dier D, 2021, ANN SCUOLA NORM-SCI, V22, P691
[6]   Li-Yau inequality for unbounded Laplacian on graphs [J].
Gong, Chao ;
Lin, Yong ;
Liu, Shuang ;
Yau, Shing-Tung .
ADVANCES IN MATHEMATICS, 2019, 357
[7]   Volume doubling, Poincare inequality and Gaussian heat kernel estimate for non-negatively curved graphs [J].
Horn, Paul ;
Lin, Yong ;
Liu, Shuang ;
Yau, Shing-Tung .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2019, 757 :89-130
[8]  
Kotschwar B, 2009, ANN SCI ECOLE NORM S, V42, P1
[9]   Differential Harnack inequalities on Riemannian manifolds I: Linear heat equation [J].
Li, Junfang ;
Xu, Xiangjin .
ADVANCES IN MATHEMATICS, 2011, 226 (05) :4456-4491
[10]   ON THE PARABOLIC KERNEL OF THE SCHRODINGER OPERATOR [J].
LI, P ;
YAU, ST .
ACTA MATHEMATICA, 1986, 156 (3-4) :153-201