Multi scale multi attention network for blood vessel segmentation in fundus images

被引:0
作者
Kande, Giri Babu [1 ]
Nalluri, Madhusudana Rao [2 ,3 ]
Manikandan, R. [4 ]
Cho, Jaehyuk [5 ,6 ]
Veerappampalayam Easwaramoorthy, Sathishkumar [7 ]
机构
[1] Vasireddy Venkatadri Inst Technol, Nambur 522508, India
[2] Amrita Vishwa Vidyapeetham, Sch Comp, Amaravati 522503, India
[3] ICFAI Fdn Higher Educ, Fac Sci & Technol IcfaiTech, Dept Comp Sci & Engn, Hyderabad, India
[4] SASTRA Deemed Univ, Sch Comp, Thanjavur 613401, India
[5] Jeonbuk Natl Univ, Dept Software Engn, Jeonju Si 54896, South Korea
[6] Jeonbuk Natl Univ, Div Elect & Informat Engn, Jeonju Si 54896, South Korea
[7] Sunway Univ, Dept Data Sci & Artificial Intelligence, ,Petaling Jaya, Petaling Jaya 47500, Selangor Darul, Malaysia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
NEURAL-NETWORK; RETINAL IMAGES; U-NET;
D O I
10.1038/s41598-024-84255-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Precise segmentation of retinal vasculature is crucial for the early detection, diagnosis, and treatment of vision-threatening ailments. However, this task is challenging due to limited contextual information, variations in vessel thicknesses, the complexity of vessel structures, and the potential for confusion with lesions. In this paper, we introduce a novel approach, the MSMA Net model, which overcomes these challenges by replacing traditional convolution blocks and skip connections with an improved multi-scale squeeze and excitation block (MSSE Block) and Bottleneck residual paths (B-Res paths) with spatial attention blocks (SAB). Our experimental findings on publicly available datasets of fundus images, specifically DRIVE, STARE, CHASE_DB1, HRF and DR HAGIS consistently demonstrate that our approach outperforms other segmentation techniques, achieving higher accuracy, sensitivity, Dice score, and area under the receiver operator characteristic (AUC) in the segmentation of blood vessels with different thicknesses, even in situations involving diverse contextual information, the presence of coexisting lesions, and intricate vessel morphologies.
引用
收藏
页数:21
相关论文
共 55 条
  • [31] Long range iris recognition: A survey
    Nguyen, Kien
    Fookes, Clinton
    Jillela, Raghavender
    Sridharan, Sridha
    Ross, Arun
    [J]. PATTERN RECOGNITION, 2017, 72 : 123 - 143
  • [32] Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database
    Odstrcilik, Jan
    Kolar, Radim
    Budai, Attila
    Hornegger, Joachim
    Jan, Jiri
    Gazarek, Jiri
    Kubena, Tomas
    Cernosek, Pavel
    Svoboda, Ondrej
    Angelopoulou, Elli
    [J]. IET IMAGE PROCESSING, 2013, 7 (04) : 373 - 383
  • [33] Oktay O, 2018, Arxiv, DOI arXiv:1804.03999
  • [34] ADAPTIVE HISTOGRAM EQUALIZATION AND ITS VARIATIONS
    PIZER, SM
    AMBURN, EP
    AUSTIN, JD
    CROMARTIE, R
    GESELOWITZ, A
    GREER, T
    TERHAARROMENY, B
    ZIMMERMAN, JB
    ZUIDERVELD, K
    [J]. COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1987, 39 (03): : 355 - 368
  • [35] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [36] Strided fully convolutional neural network for boosting the sensitivity of retinal blood vessels segmentation
    Soomro, Toufique Ahmed
    Afifi, Ahmed J.
    Gao, Junbin
    Hellwich, Olaf
    Zheng, Lihong
    Paul, Manoranjan
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2019, 134 : 36 - 52
  • [37] Ridge-based vessel segmentation in color images of the retina
    Staal, J
    Abràmoff, MD
    Niemeijer, M
    Viergever, MA
    van Ginneken, B
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (04) : 501 - 509
  • [38] Szegedy C., 2016, PREPRINT, DOI [DOI 10.48550/ARXIV.1602.07261, 10.48550/arXiv.1602.07261]
  • [39] Metrics for evaluating 3D medical image segmentation: analysis, selection, and tool
    Taha, Abdel Aziz
    Hanbury, Allan
    [J]. BMC MEDICAL IMAGING, 2015, 15
  • [40] Modeling the Tortuosity of Retinal Vessels: Does Caliber Play a Role?
    Trucco, Emanuele
    Azegrouz, Hind
    Dhillon, Baljean
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (09) : 2239 - 2247