Adaptive UE Handover Management with MAR-Aided Multivariate DQN in Ultra-Dense Networks

被引:0
作者
Wang, Weiran [1 ]
Yang, Heng [1 ]
Li, Shanshan [2 ]
Liu, Xue [1 ]
Wan, Zhaojun [3 ]
机构
[1] Shenyang Univ Technol, Sch Informat Sci & Engn, 111 Shenliao West Rd, Shenyang 110870, Liaoning, Peoples R China
[2] Shenyang Univ Technol, Sch Mech Engn, 111 Shenliao West Rd, Shenyang 110870, Liaoning, Peoples R China
[3] Shenyang Univ Technol, Sch Software, 111 Shenliao West Rd, Shenyang 110870, Liaoning, Peoples R China
关键词
Handover; Deep Q-network; Memory anchor repository; Mobility management; Reinforcement learning; MOBILITY MANAGEMENT; EFFICIENT HANDOVER; CONNECTIVITY; MODEL;
D O I
10.1007/s10922-024-09895-9
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Ultra-Dense Networks (UDNs) are a cornerstone of 5G, offering high-speed transmission and efficient resource management. However, managing frequent handovers in UDNs poses significant challenges, including increased handover failures and frequent triggering, which degrade user experience. This paper proposes an adaptive handover management approach using a multivariate Deep Q-Network (DQN) framework integrated with a Memory Anchor Repository (MAR) mechanism. The framework consists of three DQN models: DDec\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{D}_\text {Dec}$$\end{document} for handover decision-making, DTH\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{D}_\text {TH}$$\end{document} for adaptive adjustment of A2 and A4 thresholds, and DTar\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{D}_\text {Tar}$$\end{document} for target base station selection. These models leverage real-time features such as user location, movement direction, Signal-to-Interference-plus-Noise Ratio (SINR), and Reference Signal Received Power (RSRP). The MAR systematically stores and updates handover success rates at anchor points, enabling the system to learn from historical data and dynamically optimize handover decisions. Simulations conducted in a controlled UDN environment demonstrate that the proposed framework significantly reduces unnecessary handover attempts and failures. After 1250 training iterations, the overall handover failure rate decreases from 35% to 25%, with optimal performance observed using 25 anchor points. These results illustrate the framework's potential to enhance UDN handover processes, improve overall Quality of Service (QoS), and elevate user experience.
引用
收藏
页数:36
相关论文
共 44 条
[1]   Markov Chain based Predictive Model for Efficient handover Management in Vehicle-to-Infrastructure Communications [J].
Aboud, Ahmed ;
Touati, Haifa ;
Hnich, Brahim .
IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, :1117-1122
[2]   An Adaptive Cell Selection Scheme for 5G Heterogeneous Ultra-Dense Networks [J].
Alablani, Ibtihal Ahmed ;
Arafah, Mohammed Amer .
IEEE ACCESS, 2021, 9 :64224-64240
[3]   Multi-Agent Q-Learning for Real-Time Load Balancing User Association and Handover in Mobile Networks [J].
Alizadeh, Alireza ;
Lim, Byungju ;
Vu, Mai .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (08) :9001-9015
[4]   Handover Management of Drones in Future Mobile Networks: 6G Networks [J].
Angjo, Joana ;
Shayea, Ibraheem ;
Ergen, Mustafa ;
Mohamad, Hafizal ;
Alhammadi, Abdulraqeb ;
Daradkeh, Yousef Ibrahim .
IEEE ACCESS, 2021, 9 :12803-12823
[5]   Availability-aware virtual network function placement based on multidimensional universal generating functions [J].
Arakawa, Kengo ;
Oki, Eiji .
INTERNATIONAL JOURNAL OF NETWORK MANAGEMENT, 2024, 34 (02)
[6]   Improving VANET Data Dissemination Efficiency with Deep Neural Networks [J].
Bennaoui, Ameur ;
Guezouri, Mustapha ;
Keche, Mokhtar .
JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2024, 32 (04)
[7]   On the Analysis and Optimization of Fast Conditional Handover With Hand Blockage for Mobility [J].
Bin Iqbal, Subhyal ;
Nadaf, Salman ;
Awada, Ahmad ;
Karabulut, Umur ;
Schulz, Philipp ;
Fettweis, Gerhard P. P. .
IEEE ACCESS, 2023, 11 :30040-30056
[8]   On the Modeling and Analysis of Fast Conditional Handover for 5G-Advanced [J].
Bin Iqbal, Subhyal ;
Awada, Ahmad ;
Karabulut, Umur ;
Viering, Ingo ;
Schulz, Philipp ;
Fettweis, Gerhard P. .
2022 IEEE 33RD ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (IEEE PIMRC), 2022, :595-601
[9]   Handover optimisation for high-capacity low-latency 5G NR mmWave communication [J].
Brilhante, Davi da Silva ;
de Rezende, Jose F. ;
Marchetti, Nicola .
AD HOC NETWORKS, 2024, 153
[10]  
Campbell JS, 2014, IEEE SYS MAN CYBERN, P1611, DOI 10.1109/SMC.2014.6974146