On a finite group with OS-propermutable Sylow subgroup

被引:0
|
作者
E. Zubei [1 ]
机构
[1] Brest State A.S. Pushkin University,Department of Physics and Mathematics
关键词
finite group; -propermutable subgroup; Schmidt group; Sylow subgroup; -solvable group; 20D20;
D O I
10.1007/s10474-024-01495-y
中图分类号
学科分类号
摘要
A Schmidt group is a non-nilpotent group whose every proper subgroup is nilpotent. A subgroup A of a group G is called OS-propermutablein G if there is a subgroup B such that G=NG(A)B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = NG(A)B$$\end{document}, where AB is a subgroup of G and A permutes with all Schmidt subgroups of B. We proved p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-solubility of a group in which a Sylow p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p$$\end{document}-subgroup is OS-propermutable, where p≥7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\geq 7$$\end{document} 7. For p<7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p < 7$$\end{document} all non-Abelian composition factors of such group are listed.
引用
收藏
页码:570 / 577
页数:7
相关论文
共 50 条