An explainable machine learning-based prediction model for sarcopenia in elderly Chinese people with knee osteoarthritis

被引:0
|
作者
Wang, Ziyan [1 ,2 ]
Zhou, Yuqin [3 ]
Zeng, Xing [1 ]
Zhou, Yi [4 ]
Yang, Tao [1 ]
Hu, Kongfa [1 ,5 ]
机构
[1] Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Inst Chinese Med Literature, Nanjing 210023, Peoples R China
[3] Nanjing Univ Chinese Med, Affiliated Hosp, Jiangsu Prov Hosp Chinese Med, Nanjing 210029, Peoples R China
[4] Nanjing Univ Chinese Med, Wuxi Affiliated Hosp, Dept Traumatol & Orthoped, Wuxi 214071, Peoples R China
[5] Jiangsu Prov Engn Res Ctr TCM Intelligence Hlth Se, Nanjing 210023, Peoples R China
关键词
Sarcopenia; Knee osteoarthritis; CHARLS; Machine learning; Prediction model; SHAP; WORKING GROUP; RISK-FACTORS; MUSCLE; MORTALITY; BURDEN; HEALTH;
D O I
10.1007/s40520-025-02931-x
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundSarcopenia is an age-related progressive skeletal muscle disease that leads to loss of muscle mass and function, resulting in adverse health outcomes such as falls, functional decline, and death. Knee osteoarthritis (KOA) is a common chronic degenerative joint disease among elderly individuals who causes joint pain and functional impairment. These two conditions often coexist in elderly individuals and are closely related. Early identification of the risk of sarcopenia in KOA patients is crucial for developing intervention strategies and improving patient health.MethodsThis study utilized data from the China Health and Retirement Longitudinal Study (CHARLS), selecting symptomatic KOA patients aged 65 years and above and analyzing a total of 95 variables. Predictive factors were screened via least absolute shrinkage and selection operator (LASSO) regression and logistic regression. Eight machine learning algorithms were employed to construct predictive models, with internal cross-validation and independent test validation performed. The final selected model was analyzed via the SHapley Additive exPlanations (SHAP) method to enhance interpretability and clinical applicability. To facilitate clinical use, we developed a web application based on this model (http://106.54.231.169/).ResultsThe results indicate that six predictive factors-body mass index, upper arm length, marital status, total cholesterol, cystatin C, and shoulder pain-are closely associated with the risk of sarcopenia in KOA patients. CatBoost demonstrated excellent overall performance in both calibration analyses and probability estimates, reflecting accurate and dependable predictions. The final results on the independent test set (accuracy = 0.8902; F1 = 0.8627; AUC = 0.9697; Brier score = 0.0691) indicate that the model possesses strong predictive performance and excellent generalization ability, with predicted probabilities closely aligning with actual occurrence rates and thereby underscoring its reliability.ConclusionFrom the perspective of public health and aging, this study constructed an interpretable sarcopenia risk prediction model on the basis of routine clinical data. This model can be used for early screening and risk assessment of symptomatic KOA patients, assisting health departments and clinicians in the early detection and follow-up of relevant populations, thereby improving the quality of life and health outcomes of elderly individuals.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Single and ensemble explainable machine learning-based prediction of membrane flux in the reverse osmosis process
    Talhami, Mohammed
    Wakjira, Tadesse
    Alomar, Tamara
    Fouladi, Sohila
    Fezouni, Fatima
    Ebead, Usama
    Altaee, Ali
    AL-Ejji, Maryam
    Das, Probir
    Hawari, Alaa H.
    JOURNAL OF WATER PROCESS ENGINEERING, 2024, 57
  • [42] An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus
    Yuhan Du
    Anthony R. Rafferty
    Fionnuala M. McAuliffe
    Lan Wei
    Catherine Mooney
    Scientific Reports, 12
  • [43] Prediction of Perforated and Nonperforated Acute Appendicitis Using Machine Learning-Based Explainable Artificial Intelligence
    Akbulut, Sami
    Yagin, Fatma Hilal
    Cicek, Ipek Balikci
    Koc, Cemalettin
    Colak, Cemil
    Yilmaz, Sezai
    DIAGNOSTICS, 2023, 13 (06)
  • [44] Machine learning-based prediction of Clostridium growth in pork meat using explainable artificial intelligence
    Ince, Volkan
    Bader-El-Den, Mohamed
    Alderton, Jack
    Arabikhan, Farzad
    Sari, Omer Faruk
    Sansom, Annette
    JOURNAL OF FOOD SCIENCE AND TECHNOLOGY-MYSORE, 2025,
  • [45] An explainable machine learning-based clinical decision support system for prediction of gestational diabetes mellitus
    Du, Yuhan
    Rafferty, Anthony R.
    McAuliffe, Fionnuala M.
    Wei, Lan
    Mooney, Catherine
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [46] Machine learning-based 28-day mortality prediction model for elderly neurocritically Ill patients
    Yuan, Jia
    Xiong, Jiong
    Yang, Jinfeng
    Dong, Qi
    Wang, Yin
    Cheng, Yumei
    Chen, Xianjun
    Liu, Ying
    Xiao, Chuan
    Tao, Junlin
    Lizhang, Shuangzi
    Liujiao, Yangzi
    Chen, Qimin
    Shen, Feng
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2025, 260
  • [47] Machine learning-based prediction of transfusion
    Mitterecker, Andreas
    Hofmann, Axel
    Trentino, Kevin M.
    Lloyd, Adam
    Leahy, Michael F.
    Schwarzbauer, Karin
    Tschoellitsch, Thomas
    Boeck, Carl
    Hochreiter, Sepp
    Meier, Jens
    TRANSFUSION, 2020, 60 (09) : 1977 - 1986
  • [48] A novel explainable machine learning-based healthy ageing scale
    Stepancic, Katarina Gasperlin
    Ramovs, Ana
    Ramovs, Joze
    Kosir, Andrej
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2024, 24 (01)
  • [49] Development of a machine learning-based prediction model for clinical pregnancy of intrauterine insemination in a large Chinese population
    Wu, Jialin
    Li, Tingting
    Xu, Linan
    Chen, Lina
    Liang, Xiaoyan
    Lin, Aihua
    Zhang, Wangjian
    Huang, Rui
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2024, 41 (08) : 2173 - 2183
  • [50] Prediction Model of Elderly Care Willingness Based on Machine Learning
    Jin, Yongchao
    Liu, Dongmei
    Wang, Kenan
    Wang, Renfang
    Zhuang, Xiaodie
    MATHEMATICS, 2023, 11 (03)