An explainable machine learning-based prediction model for sarcopenia in elderly Chinese people with knee osteoarthritis

被引:0
|
作者
Wang, Ziyan [1 ,2 ]
Zhou, Yuqin [3 ]
Zeng, Xing [1 ]
Zhou, Yi [4 ]
Yang, Tao [1 ]
Hu, Kongfa [1 ,5 ]
机构
[1] Nanjing Univ Chinese Med, Sch Artificial Intelligence & Informat Technol, Nanjing 210023, Peoples R China
[2] Nanjing Univ Chinese Med, Inst Chinese Med Literature, Nanjing 210023, Peoples R China
[3] Nanjing Univ Chinese Med, Affiliated Hosp, Jiangsu Prov Hosp Chinese Med, Nanjing 210029, Peoples R China
[4] Nanjing Univ Chinese Med, Wuxi Affiliated Hosp, Dept Traumatol & Orthoped, Wuxi 214071, Peoples R China
[5] Jiangsu Prov Engn Res Ctr TCM Intelligence Hlth Se, Nanjing 210023, Peoples R China
关键词
Sarcopenia; Knee osteoarthritis; CHARLS; Machine learning; Prediction model; SHAP; WORKING GROUP; RISK-FACTORS; MUSCLE; MORTALITY; BURDEN; HEALTH;
D O I
10.1007/s40520-025-02931-x
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
BackgroundSarcopenia is an age-related progressive skeletal muscle disease that leads to loss of muscle mass and function, resulting in adverse health outcomes such as falls, functional decline, and death. Knee osteoarthritis (KOA) is a common chronic degenerative joint disease among elderly individuals who causes joint pain and functional impairment. These two conditions often coexist in elderly individuals and are closely related. Early identification of the risk of sarcopenia in KOA patients is crucial for developing intervention strategies and improving patient health.MethodsThis study utilized data from the China Health and Retirement Longitudinal Study (CHARLS), selecting symptomatic KOA patients aged 65 years and above and analyzing a total of 95 variables. Predictive factors were screened via least absolute shrinkage and selection operator (LASSO) regression and logistic regression. Eight machine learning algorithms were employed to construct predictive models, with internal cross-validation and independent test validation performed. The final selected model was analyzed via the SHapley Additive exPlanations (SHAP) method to enhance interpretability and clinical applicability. To facilitate clinical use, we developed a web application based on this model (http://106.54.231.169/).ResultsThe results indicate that six predictive factors-body mass index, upper arm length, marital status, total cholesterol, cystatin C, and shoulder pain-are closely associated with the risk of sarcopenia in KOA patients. CatBoost demonstrated excellent overall performance in both calibration analyses and probability estimates, reflecting accurate and dependable predictions. The final results on the independent test set (accuracy = 0.8902; F1 = 0.8627; AUC = 0.9697; Brier score = 0.0691) indicate that the model possesses strong predictive performance and excellent generalization ability, with predicted probabilities closely aligning with actual occurrence rates and thereby underscoring its reliability.ConclusionFrom the perspective of public health and aging, this study constructed an interpretable sarcopenia risk prediction model on the basis of routine clinical data. This model can be used for early screening and risk assessment of symptomatic KOA patients, assisting health departments and clinicians in the early detection and follow-up of relevant populations, thereby improving the quality of life and health outcomes of elderly individuals.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Explainable Machine Learning-Based Prediction Model for Diabetic Nephropathy
    Yin, Jing-Mei
    Li, Yang
    Xue, Jun-Tang
    Zong, Guo-Wei
    Fang, Zhong-Ze
    Zou, Lang
    JOURNAL OF DIABETES RESEARCH, 2024, 2024
  • [2] Developing an Explainable Machine Learning-Based Thyroid Disease Prediction Model
    Arjaria, Siddhartha Kumar
    Rathore, Abhishek Singh
    Chaubey, Gyanendra
    INTERNATIONAL JOURNAL OF BUSINESS ANALYTICS, 2022, 9 (03)
  • [3] A machine learning-based diagnostic model associated with knee osteoarthritis severity
    Kwon, Soon Bin
    Ku, Yunseo
    Han, Hy Uk-Soo
    Lee, Myung Chul
    Kim, Hee Chan
    Ro, Du Hyun
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [4] Machine Learning-Based Individualized Survival Prediction Model for Total Knee Replacement in Osteoarthritis: Data From the Osteoarthritis Initiative
    Jamshidi, Afshin
    Pelletier, Jean-Pierre
    Labbe, Aurelie
    Abram, Francois
    Martel-Pelletier, Johanne
    Droit, Arnaud
    ARTHRITIS CARE & RESEARCH, 2021, 73 (10) : 1518 - 1527
  • [5] Identification of Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis Patients
    Kokkotis, Christos
    Moustakidis, Serafeim
    Giakas, Giannis
    Tsaopoulos, Dimitrios
    APPLIED SCIENCES-BASEL, 2020, 10 (19):
  • [6] Explainable machine learning-based prediction model for dynamic resilient modulus of subgrade soils
    Li, Xiangyang
    Liu, Wenjun
    Xu, Changjing
    Liu, Ning
    Feng, Shuaike
    Zhang, Xin
    Li, Yanbin
    Hao, Jianwen
    TRANSPORTATION GEOTECHNICS, 2024, 49
  • [7] Machine learning-based prediction of contralateral knee osteoarthritis development using the Osteoarthritis Initiative and the Multicenter Osteoarthritis Study dataset
    Kim, Ji-Sahn
    Choi, Byung Sun
    Kim, Sung Eun
    Lee, Yong Seuk
    Lee, Do Weon
    Ro, Du Hyun
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2025, 43 (03) : 576 - 585
  • [8] Machine learning-based bioimpedance assessment of knee osteoarthritis severity
    Munoz, Juan D.
    Mosquera, Victor H.
    Rengifo, Carlos F.
    Roldan, Elizabeth
    BIOMEDICAL PHYSICS & ENGINEERING EXPRESS, 2024, 10 (04):
  • [9] Machine learning-based bioimpedance assessment of knee osteoarthritis severity
    Corporación Universitaria Comfacauca, Popayán, Colombia
    不详
    不详
    Biomed. Phys. Eng. Express, 1600, 4
  • [10] A MACHINE LEARNING-BASED PREDICTIVE MODEL FOR PROGRESSION OF KNEE OSTEOARTHRITIS FROM CLINICAL DATA
    Li, H. T.
    Chan, L.
    Wen, C.
    OSTEOARTHRITIS AND CARTILAGE, 2020, 28 : S312 - S314