PbS and InAs Quantum-Dot Thin Films for Short-Wave Infrared Detectors

被引:0
作者
Siddik, Abu Bakar [1 ,2 ]
Georgitzikis, Epimitheas [1 ]
Song, Wenya [1 ]
Papadopoulou, Athina [1 ,2 ]
Zaman, Arman Uz [1 ]
Lim, Myung Jin [1 ]
Pejovic, Vladimir [1 ]
Lieberman, Itai [1 ]
Malinowski, Pawel E. [1 ]
Genoe, Jan [1 ,2 ]
Conard, Thierry [1 ]
Cheyns, David [1 ]
Heremans, Paul [1 ,2 ]
机构
[1] IMEC, B-3001 Leuven, Belgium
[2] Katholieke Univ Leuven, Dept Elect Engn ESAT, B-3001 Leuven, Belgium
关键词
colloidal quantum dot; PbS; InAs; solid-state ligand exchange; liquid-phase ligand exchange; photoelectron spectroscopy; transmission electron microscopy; energy band structure; PHOTODETECTORS; THICKNESS;
D O I
10.1021/acsanm.4c04386
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Colloidal quantum dots (CQDs) are cutting-edge optoelectronic semiconductor nanocrystals that enable short-wave infrared (SWIR) vision by a widely tunable SWIR light absorption. Thanks to the advances in CQD surface ligand engineering, SWIR detectors and emitters will soon find their way into products. The CQD-based optoelectronic devices are being optimized by adapting the size of CQDs and selection of the ligands, and yet, the measurement schemes of energy band structure based on different ligands and processes of ligand exchange are not systematically studied. In this work, we systematically characterize the energy band structure of PbS (absorbing at different SWIR wavelengths) and InAs with various ligands for both solid-state and liquid-phase ligand exchange (LPLE) processes [solid-state ligand exchange (SSLE) and LPLE] by using ultraviolet photoelectron spectroscopy. The deduced energy band structures reveal that the apparent energy difference between the Fermi and valence band maximum, |E F - E VBM|, largely depends on the physical density and distribution of the CQDs within the probing area. Transmission electron microscopy images, X-ray photoelectron spectroscopy, atomic force microscopy, and variable angle spectroscopic ellipsometry reveal details of the CQD distribution, surface elemental profile, and topologies and how they affect the observed energy band structure. We demonstrate that the multistep coating improves the CQD distribution and packing density, resulting in more reliable and reproducible results that represent the bulk CQD film energy band structure. The comparison of solid and liquid phase ligand-exchanged PbS and InAs SWIR CDQs energetics indicates that the LPLE ensures more uniform dispersion and a high packing density of CQDs regardless of the solution concentration. The photoemission-deduced energy band structures are validated by fabricating thin-film photodiodes using SWIR SSLE PbS and LPLE In(As,P) CQDs. The Fermi-referenced band structures of the fabricated full photodiode stacks including band offsets and bending are discussed to improve our understanding of the device working principles and to further optimize the devices.
引用
收藏
页码:25412 / 25422
页数:11
相关论文
共 53 条
[1]   Colloidal Quantum Dot Inks for Single-Step-Fabricated Field-Effect Transistors: The Importance of Postdeposition Ligand Removal [J].
Balazs, Daniel M. ;
Rizkia, Nisrina ;
Fang, Hong-Hua ;
Dirin, Dmitry N. ;
Momand, Jamo ;
Kooi, Bart J. ;
Kovalenko, Maksym V. ;
Loi, Maria Antonietta .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (06) :5626-5632
[2]   Comparing Halide Ligands in PbS Colloidal Quantum Dots for Field-Effect Transistors and Solar Cells [J].
Bederak, Dmytro ;
Balazs, Daniel M. ;
Sukharevska, Nataliia V. ;
Shulga, Artem G. ;
Abdu-Aguye, Mustapha ;
Dirin, Dmitry N. ;
Kovalenko, Maksym V. ;
Loi, Maria A. .
ACS APPLIED NANO MATERIALS, 2018, 1 (12) :6882-6889
[3]   Infrared Solution-Processed Quantum Dot Solar Cells Reaching External Quantum Efficiency of 80% at 1.35 μm and Js']Jsc in Excess of 34 mA cm-2 [J].
Bi, Yu ;
Pradhan, Santanu ;
Gupta, Shuchi ;
Akgul, Mehmet Zafer ;
Stavrinadis, Alexandros ;
Konstantatos, Gerasimos .
ADVANCED MATERIALS, 2018, 30 (07)
[4]   Energy Level Modification in Lead Sulfide Quantum Dot Thin Films through Ligand Exchange [J].
Brown, Patrick R. ;
Kim, Donghun ;
Lunt, Richard R. ;
Zhao, Ni ;
Bawendi, Moungi G. ;
Grossman, Jeffrey C. ;
Bulovic, Vladimir .
ACS NANO, 2014, 8 (06) :5863-5872
[5]  
Cademartiri L., 2009, CONCEPTS NANOCHEMIST
[6]   Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement [J].
Carey, Graham H. ;
Chou, Kang W. ;
Yan, Buyi ;
Kirmani, Ahmad R. ;
Amassian, Aram ;
Sargent, Edward H. .
MRS COMMUNICATIONS, 2013, 3 (02) :83-90
[7]   Tailoring of colloidal quantum dot layer thickness for highly efficient short-wavelength infrared photodiode [J].
Choi, Gi-Sang ;
Lim, Myung Jin ;
Sutcu, Irem ;
Yu, Jehyeok ;
Malinowski, Pawel ;
Lee, Sang Yeon ;
Lieberman, Itai .
APPLIED PHYSICS LETTERS, 2024, 124 (12)
[8]   Zero-Dimensional PbS Quantum Dot-InGaZnO Film Heterostructure for Short-Wave Infrared Flat-Panel Imager [J].
Choi, Hyun Tae ;
Kang, Ji-Hoon ;
Ahn, Jongtae ;
Jin, Junyoung ;
Kim, Jaeyoung ;
Park, Soohyung ;
Kim, Yong-Hoon ;
Kim, Heedae ;
Song, Jin Dong ;
Hwang, Gyu Weon ;
Im, Seongil ;
Shim, Wooyoung ;
Lee, Young Tack ;
Park, Min-Chul ;
Hwang, Do Kyung .
ACS PHOTONICS, 2020, 7 (08) :1932-1941
[9]  
Chuang Chia-Hao M, 2014, Nat Mater, V13, P796, DOI 10.1038/nmat3984
[10]   Metal Halide Solid-State Surface Treatment for High Efficiency PbS and PbSe QD Solar Cells [J].
Crisp, Ryan W. ;
Kroupa, Daniel M. ;
Marshall, Ashley R. ;
Miller, Elisa M. ;
Zhang, Jianbing ;
Beard, Matthew C. ;
Luther, Joseph M. .
SCIENTIFIC REPORTS, 2015, 5