Maximum Bisections of Graphs Without Adjacent Quadrilaterals
被引:0
|
作者:
Hu, Qiming
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, 1 Wenyuan Rd, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math Sci, 1 Wenyuan Rd, Nanjing 210023, Peoples R China
Hu, Qiming
[1
]
Xu, Baogang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Inst Math, Sch Math Sci, 1 Wenyuan Rd, Nanjing 210023, Peoples R ChinaNanjing Normal Univ, Inst Math, Sch Math Sci, 1 Wenyuan Rd, Nanjing 210023, Peoples R China
Xu, Baogang
[1
]
机构:
[1] Nanjing Normal Univ, Inst Math, Sch Math Sci, 1 Wenyuan Rd, Nanjing 210023, Peoples R China
Let Ck be a cycle of length k . Let G be a graph with n vertices, m edges. Lin and Zeng proved that if G has a perfect matching and does not contain C-4 , C-6 and C-2k , then G admits a bisection of size at least m|2 + c(k)m((2k+1)/(2k+2)) and showed that the bound is tight for k E { 3 , 5}. In this paper, we obtain a similar tight result by replacing C-4 with two adjacent C-4's.
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Nanjing Normal Univ, Coll Taizhou, Taizhou 225300, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China
Jin, Jing
Xu, Baogang
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R ChinaNanjing Normal Univ, Sch Math Sci, Inst Math, Nanjing 210023, Jiangsu, Peoples R China