Microbial-priming of seeds with plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi for improving cotton (Gossypium barbadense L.) growth, yield and water productivity under drought stress

被引:0
|
作者
El-Beltagi, Hossam S. [1 ]
El-Waraky, Essam Abdelaziz [2 ]
El-Mogy, Mohamed M. [3 ]
El-Nady, Mohamed Fathi [4 ]
Ismail, Ahmed Mahmoud [3 ,5 ]
Belal, Elsayed B. [6 ]
Al-Daej, Mohammed I. [1 ]
El-Khateeb, Nagwa Mohamed [6 ]
Hamed, Lamy [7 ]
Metwaly, Metwaly Mahfouz Salem [4 ]
机构
[1] King Faisal Univ, Coll Agr & Food Sci, Agr Biotechnol Dept, Al Hufuf 31982, Al Ahsa, Saudi Arabia
[2] Agr Res Ctr, Cotton Res Inst, Physiol Dept, Giza, Egypt
[3] King Faisal Univ, Coll Agr & Food Sci, Dept Arid Land Agr, Al Hufuf 31982, Saudi Arabia
[4] Kafrelsheikh Univ, Fac Agr, Dept Agr Bot, Kafr Al Sheikh 33516, Egypt
[5] King Faisal Univ, Coll Agr & Food Sci, Pests & Plant Dis Unit, Al Hufuf 31982, Saudi Arabia
[6] Kafrelsheikh Univ, Fac Agr, Agr Bot Dept, Agr Microbiol, Kafr Al Sheikh 33516, Egypt
[7] King Faisal Univ, Coll Agr & Food Sci, Dept Environm & Agr Nat Resources, POB 420, Al Hasa 31982, Saudi Arabia
关键词
Antioxidant enzymes; <italic>Bacillus amyloliquifaciens</italic>; Chlorophyll pigments; <italic>Funneliformis mosseae</italic>; <italic>Gossypium barbadense</italic> L; Water deficit stress; FIBER QUALITY; UPLAND COTTON; SALT STRESS; SALINITY; LEAVES; CROP; BACTERIA; LIGNIFICATION; PEROXIDASES; STRATEGIES;
D O I
10.1007/s11756-025-01865-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cotton is particularly vulnerable to water deficit stress, resulting in substantial reduction in both its growth and yield. Therefore, the aim of the present study was to assess the effectiveness of extending irrigation intervals (to every 30, 45 days) compared to well-irrigated plants (every 15 days). Additionally, in an effort to mitigate adverse effects of water deficit stress, cotton seeds and soil were inoculated with Bacillus amyloliquifaciens, Funneliformis mosseae, either individually or in combination. The study was conducted over two summer seasons in 2021, 2022. Results revealed that extending irrigation intervals had negative impact on mycorrhizal colonization, and various plant growth or productivity parameters, including, plant height, leaf area, dry weight per plant, number of fruiting branches and bolls per plant, lint percentage, seed index, seed yield, fiber quality. Furthermore, physiological, or biochemical characteristics, including chlorophyll pigments (chl.a, b and total) and leaf relative water content were adversely affected by prolonged irrigation intervals. Biopriming of cotton seeds with rhizobacteria that promotes plant growth and arbuscular mycorrhizal fungi was found to improve plant height, leaf area, plant dry weight, number of fruiting branches and bolls/plant, yield and yield component, chlorophyll pigments, as well as enhance efficiency of antioxidant enzyme activity (catalase, peroxidase and polyphenol oxidase), leaf total phenols and proline contents. Biopriming cotton seeds presents hopeful strategy for boosting cotton yield, reducing effects of drought stress and fostering soil fertility.
引用
收藏
页码:779 / 803
页数:25
相关论文
共 50 条
  • [41] Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria Mediated Water Stress Tolerance in Quinoa Seeds by Modulating the Phenolics Compounds, Stress Markers, Osmolytes Accumulation and Antioxidant Defense
    Wissal Benaffari
    Abdelilah Meddich
    Gesunde Pflanzen, 2023, 75 : 2121 - 2132
  • [42] Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress
    Gholamhoseini, M.
    Ghalavand, A.
    Dolatabadian, A.
    Jamshidi, E.
    Khodaei-Joghan, A.
    AGRICULTURAL WATER MANAGEMENT, 2013, 117 : 106 - 114
  • [43] Effects of Different Timings of Drought Stress and Plant Growth-Promoting Rhizobacteria Inoculation on the Photosynthetic Characteristics of Shallot (Allium ascalonicum L.)
    Pratiwi, Arum
    Maghfoer, Mochammad Dawam
    Widaryanto, Eko
    Aini, Nurul
    JOURNAL OF ECOLOGICAL ENGINEERING, 2024, 25 (05): : 230 - 243
  • [44] Use of Plant-Growth Promoting Rhizobacteria and Mycorrhizal Fungi Consortium as a Strategy to Improve Chickpea (Cicer arietinum L.) Productivity under Different Irrigation Regimes
    Laranjeira, Sara
    Reis, Sara
    Torcato, Cristina
    Raimundo, Fernando
    Ferreira, Luis
    Carnide, Valdemar
    Fernandes-Silva, Anabela
    Marques, Guilhermina
    AGRONOMY-BASEL, 2022, 12 (06):
  • [45] Combined effects of paclobutrazol application and plant growth-promoting rhizobacteria (PGPRs) inoculation on physiological parameters of wheat (Triticum aestivum L.) under drought stress
    Rahimi, Reza
    Paknejad, Farzad
    Sadeghishoae, Mehdi
    Ilkaee, Mohammad Nabi
    Rezaei, Mehdi
    CEREAL RESEARCH COMMUNICATIONS, 2024, 52 (03) : 1015 - 1029
  • [46] Plant Growth-Promoting Rhizobacteria Improve Growth, Morph-Physiological Responses, Water Productivity, and Yield of Rice Plants Under Full and Deficit Drip Irrigation
    Abd El-Mageed, Taia A.
    Abd El-Mageed, Shimaa A.
    El-Saadony, Mohamed T.
    Abdelaziz, Sayed
    Abdou, Nasr M.
    RICE, 2022, 15 (01)
  • [47] Plant Growth-Promoting Rhizobacteria Improve Growth, Morph-Physiological Responses, Water Productivity, and Yield of Rice Plants Under Full and Deficit Drip Irrigation
    Taia A. Abd El-Mageed
    Shimaa A. Abd El-Mageed
    Mohamed T. El-Saadony
    Sayed Abdelaziz
    Nasr M. Abdou
    Rice, 2022, 15
  • [48] Ameliorative Effects of Plant Growth Promoting Rhizobacteria and Arbuscular Mycorrhizal Fungi on Cu Stress in Maize (Zea mays L.) with a Focus on Oxidative Damage, Antioxidant Responses, and Gene Expression
    Alshegaihi, Rana M.
    Alatawi, Aishah
    Alenezi, Muneefah Abdullah
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2024, 24 (02) : 2437 - 2455
  • [49] Plant growth-promoting rhizobacteria (PGPR) improve the growth and nutrient use efficiency in maize (Zea mays L.) under water deficit conditions
    Pereira, S. I. A.
    Abreu, D.
    Moreira, H.
    Vega, A.
    Castro, P. M. L.
    HELIYON, 2020, 6 (10)
  • [50] Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.)
    Chandanie, W. A.
    Kubota, M.
    Hyakumachi, M.
    APPLIED SOIL ECOLOGY, 2009, 41 (03) : 336 - 341