Microbial-priming of seeds with plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi for improving cotton (Gossypium barbadense L.) growth, yield and water productivity under drought stress

被引:0
|
作者
El-Beltagi, Hossam S. [1 ]
El-Waraky, Essam Abdelaziz [2 ]
El-Mogy, Mohamed M. [3 ]
El-Nady, Mohamed Fathi [4 ]
Ismail, Ahmed Mahmoud [3 ,5 ]
Belal, Elsayed B. [6 ]
Al-Daej, Mohammed I. [1 ]
El-Khateeb, Nagwa Mohamed [6 ]
Hamed, Lamy [7 ]
Metwaly, Metwaly Mahfouz Salem [4 ]
机构
[1] King Faisal Univ, Coll Agr & Food Sci, Agr Biotechnol Dept, Al Hufuf 31982, Al Ahsa, Saudi Arabia
[2] Agr Res Ctr, Cotton Res Inst, Physiol Dept, Giza, Egypt
[3] King Faisal Univ, Coll Agr & Food Sci, Dept Arid Land Agr, Al Hufuf 31982, Saudi Arabia
[4] Kafrelsheikh Univ, Fac Agr, Dept Agr Bot, Kafr Al Sheikh 33516, Egypt
[5] King Faisal Univ, Coll Agr & Food Sci, Pests & Plant Dis Unit, Al Hufuf 31982, Saudi Arabia
[6] Kafrelsheikh Univ, Fac Agr, Agr Bot Dept, Agr Microbiol, Kafr Al Sheikh 33516, Egypt
[7] King Faisal Univ, Coll Agr & Food Sci, Dept Environm & Agr Nat Resources, POB 420, Al Hasa 31982, Saudi Arabia
关键词
Antioxidant enzymes; <italic>Bacillus amyloliquifaciens</italic>; Chlorophyll pigments; <italic>Funneliformis mosseae</italic>; <italic>Gossypium barbadense</italic> L; Water deficit stress; FIBER QUALITY; UPLAND COTTON; SALT STRESS; SALINITY; LEAVES; CROP; BACTERIA; LIGNIFICATION; PEROXIDASES; STRATEGIES;
D O I
10.1007/s11756-025-01865-z
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cotton is particularly vulnerable to water deficit stress, resulting in substantial reduction in both its growth and yield. Therefore, the aim of the present study was to assess the effectiveness of extending irrigation intervals (to every 30, 45 days) compared to well-irrigated plants (every 15 days). Additionally, in an effort to mitigate adverse effects of water deficit stress, cotton seeds and soil were inoculated with Bacillus amyloliquifaciens, Funneliformis mosseae, either individually or in combination. The study was conducted over two summer seasons in 2021, 2022. Results revealed that extending irrigation intervals had negative impact on mycorrhizal colonization, and various plant growth or productivity parameters, including, plant height, leaf area, dry weight per plant, number of fruiting branches and bolls per plant, lint percentage, seed index, seed yield, fiber quality. Furthermore, physiological, or biochemical characteristics, including chlorophyll pigments (chl.a, b and total) and leaf relative water content were adversely affected by prolonged irrigation intervals. Biopriming of cotton seeds with rhizobacteria that promotes plant growth and arbuscular mycorrhizal fungi was found to improve plant height, leaf area, plant dry weight, number of fruiting branches and bolls/plant, yield and yield component, chlorophyll pigments, as well as enhance efficiency of antioxidant enzyme activity (catalase, peroxidase and polyphenol oxidase), leaf total phenols and proline contents. Biopriming cotton seeds presents hopeful strategy for boosting cotton yield, reducing effects of drought stress and fostering soil fertility.
引用
收藏
页码:779 / 803
页数:25
相关论文
共 38 条
  • [1] Amelioration of water deficiency stress in roselle (Hibiscus sabdariffa) by arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria
    Sanayei, Sara
    Barmaki, Morteza
    Ebadi, Ali
    Torabi-Giglou, Mousa
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2021, 49 (02) : 1 - 17
  • [2] Dual inoculations of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria boost drought resistance and essential oil yield of common myrtle
    Azizi, Soghra
    Kouchaksaraei, Masoud Tabari
    Hadian, Javad
    Abad, Ali Reza Fallah Nosrat
    Sanavi, Seyed Ali Mohammad Modarres
    Ammer, Christian
    Bader, Martin K-F
    FOREST ECOLOGY AND MANAGEMENT, 2021, 497 (497)
  • [3] Effect of Plant growth promoting rhizobacteria (PGPR) and mycorrhizal fungi inoculations on essential oil in Melissa officinalis L. under drought stress
    Gorgi, Olia Eshaghi
    Fallah, Hormoz
    Niknejad, Yosoof
    Tari, Davood Barari
    BIOLOGIA, 2022, 77 (01) : 11 - 20
  • [4] Effects of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria on growth and reactive oxygen metabolism of tomato fruits under low saline conditions
    Zhou, Wei
    Zhang, Mengmeng
    Tao, Kezhang
    Zhu, Xiancan
    BIOCELL, 2022, 46 (12) : 2575 - 2582
  • [5] Potential of desiccation-tolerant plant growth-promoting rhizobacteria in growth augmentation of wheat (Triticum aestivum L.) under drought stress
    Shankar, Ajay
    Prasad, Vishal
    FRONTIERS IN MICROBIOLOGY, 2023, 14
  • [6] Individual and Combinatorial Applications of Arbuscular Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increase Morpho-Physio-Biochemical Responses in Rice (Oryza sativa L.) under Cadmium Stress
    AL-Huqail, Arwa Abdulkreem
    Alatawi, Aishah
    Javed, Sadia
    Tahir, Muhammad Faran
    Anas, Muhammad
    Saleem, Muhammad Hamzah
    Ahmed, Temoor
    Alshaharni, Mohammed O.
    Fayad, Eman
    Khan, Khalid Ali
    Khalid, Awais
    Ali, Shafaqat
    Fahad, Shah
    JOURNAL OF SOIL SCIENCE AND PLANT NUTRITION, 2025,
  • [7] Co-inoculation of arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria can mitigate the effects of drought in wheat plants (Triticum durum)
    Ikan, Chayma
    Ben-Laouane, Raja
    Ouhaddou, Redouane
    Ghoulam, Cherki
    Meddich, Abdelilah
    PLANT BIOSYSTEMS, 2023, 157 (04): : 907 - 919
  • [8] Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress (Cupressus arizonica G.) under drought stress
    Aalipour, Hamed
    Nikbakht, Ali
    Etemadi, Nematollah
    Rejali, Farhad
    Soleimani, Mohsen
    SCIENTIA HORTICULTURAE, 2020, 261
  • [9] Mitigation of drought stress in Zea mays L. through plant growth-promoting rhizobacteria assisted by foliar sorghum water extract
    Ullah, Raza
    Siddiqui, Ayesha
    Rehman, Shoaib Ur
    Kamran, Muhammad
    Abbas, Hafiz Tassawar
    Khalid, Muhammad Awais
    Afzal, Muhammad Rahil
    Jabbar, Esha
    Sohail, Muhammad Irfan
    ACTA PHYSIOLOGIAE PLANTARUM, 2024, 46 (06)
  • [10] Plant growth-promoting rhizobacteria and biochar as bioeffectors and bioalleviators of drought stress in faba bean (Vicia faba L.)
    Nafees, Muhammad
    Ullah, Sami
    Ahmed, Iftikhar
    FOLIA MICROBIOLOGICA, 2024, 69 (03) : 653 - 666