Asymptotic Solution of a Singularly Perturbed Cauchy Problem in the Presence of a Rational Simple Turning Point

被引:0
作者
A. G. Eliseev [1 ]
T. A. Ratnikova [1 ]
机构
[1] National Research University “Moscow Energy Institute”, Moscow
关键词
34E20; asymptotic solution; regularization method; singularly perturbed Cauchy problem; turning point;
D O I
10.1007/s10958-025-07666-8
中图分类号
学科分类号
摘要
In this paper, based on S. A. Lomov’s regularization method, we construct an asymptotic solution of a singularly perturbed Cauchy problem in the case of violation of the stability conditions for the spectrum of the limit operator. In particular, we consider the problem with a “simple” turning point, i.e., where one eigenvalue vanishes for t = 0 and has the form tm/n (the limit operator is discretely irreversible). © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2025.
引用
收藏
页码:80 / 86
页数:6
相关论文
共 4 条
[1]  
Eliseev A.G., Lomov S.A., Theory of singular perturbations in the case of spectral singularities of the limit operator, Mat. Sb, 131, 173, pp. 544-557, (1986)
[2]  
Lioville J., Second memoire sur le développement des fonctions en séries dont divers termes sont assujettis, à une même équation, J. Math. Pure Appl, 2, pp. 16-35, (1837)
[3]  
Lomov S.A., Introduction to the General Theory of Singular Perturbations, (1981)
[4]  
Tursunov D.A., Kozhbekov K.G., Asymptotics of solutions of singularly perturbed differential equations with fractional turning point, Izv. Irkutsk. Univ, 21, pp. 108-121, (2017)