Periodic solutions of time-dependent perturbed Hamiltonian systems

被引:0
作者
Alberti, Angelo [1 ]
Vidal, Claudio [2 ]
机构
[1] Univ Fed Sergipe, Dept Matemat, Cidade Univ Prof Jose Aloisio Campos,Jardim Rosa E, Sao Cristovao, SE, Brazil
[2] Univ Bio Bio, Fac Ciencias, Dept Matemat, VIII Reg, Concepcion ?, Chile
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2025年 / 32卷 / 02期
关键词
Periodic solutions; Time-dependent 2 pi-periodic Hamiltonian systems; KEPLER-PROBLEM; PERTURBATIONS;
D O I
10.1007/s00030-025-01024-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider time-periodic Hamiltonians of the form H(t, Q, P, & varepsilon;) where & varepsilon; is a small parameter: The unperturbed function H-0(Q, P) = H(t, Q, P, 0) is autonomous, integrable and has periodic solutions. It is assumed that these Hamiltonian functions can be written in convenient symplectic coordinates in the form H(t, theta, phi, q, I, J, p, & varepsilon;) = H-0(I, J) + & varepsilon;H-1(t, theta, phi, q, I, J, p) + O(& varepsilon;(2)), where theta, phi is an element of T, I, J is an element of R, q, p is an element of R-n. The aim of this paper is to show the existence of periodic solutions of the previous family of time-dependent 2 pi-periodically perturbed Hamiltonian systems under different approaches.
引用
收藏
页数:26
相关论文
共 10 条
[1]   Periodic solutions of symmetric Kepler perturbations and applications [J].
Alberti, Angelo ;
Vidal, Claudio .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2016, 23 (03) :439-465
[2]  
Boccaletti D., 2004, Theory of orbits vol 1
[3]   PERIODIC SOLUTIONS AND REGULARIZATION OF A KEPLER PROBLEM WITH TIME-DEPENDENT PERTURBATION [J].
Boscaggin, Alberto ;
Ortega, Rafael ;
Zhao, Lei .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 372 (01) :677-703
[4]   Periodic solutions of a perturbed Kepler problem in the plane: From existence to stability [J].
Boscaggin, Alberto ;
Ortega, Rafael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (04) :2528-2551
[5]   Periodic solutions of symmetric perturbations of the Kepler problem [J].
Cabral, H ;
Vidal, C .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2000, 163 (01) :76-88
[6]   Analytic continuation in the case of non-regular dependency on a small parameter with an application to celestial mechanics [J].
Cors, JM ;
Pinyol, C ;
Soler, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (01) :1-19
[7]  
DUISTERMAAT JJ, 1972, ARCH RATION MECH AN, V45, P143
[8]  
DUISTERMAAT JJ, 1970, ARCH RATION MECH AN, V38, P59
[9]  
Meyer KR, 2009, APPL MATH SCI, V90, P1, DOI 10.1007/978-0-387-09724-4_1
[10]  
Szebehely V., 1967, Theory of Orbits