Braided Hopf algebras and gauge transformations

被引:1
作者
Aschieri, Paolo [1 ,2 ]
Landi, Giovanni [3 ,4 ]
Pagani, Chiara [3 ,5 ,6 ]
机构
[1] Univ Piemonte Orientale, Dipartimento Sci Innovaz Tecnolog, Viale T Michel 11, I-15121 Alessandria, Italy
[2] INFN Torino, Via P Giuria 1, I-10125 Turin, Italy
[3] Univ Trieste, Matemat, Via A Valerio 12-1, I-34127 Trieste, Italy
[4] INFN, Sez Trieste, Trieste, Italy
[5] Univ Studi Napoli Federico II, Dipartimento Matemat & Applicazioni, Via Cintia 21, I-80126 Naples, Italy
[6] INFN Napoli, Naples, Italy
关键词
Noncommutative gauge transformations; Braided Lie algebras; Braided derivations; Hopf-Galois extensions; NONCOMMUTATIVE INSTANTONS; MODULI SPACES; QUANTUM; CONNECTIONS;
D O I
10.1007/s11040-024-09492-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study infinitesimal gauge transformations of K-equivariant noncommutative principal bundles, for K a triangular Hopf algebra. They form a Lie algebra of derivations in the category of K-modules. We study Drinfeld twist deformations of these infinitesimal gauge transformations. We give several examples from abelian and Jordanian twist deformations. These include the quantum Lie algebra of gauge transformations of the instanton bundle and of the orthogonal bundle on the quantum sphere S theta 4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S<^>4_\theta $$\end{document}.
引用
收藏
页数:51
相关论文
共 37 条
[1]  
Aschieri P., arXiv
[2]  
Aschieri P., arXiv
[3]  
Aschieri P, 2023, MATH PHYS ANAL GEOM, V26, DOI 10.1007/s11040-023-09454-9
[4]   The gauge group of a noncommutative principal bundle and twist deformations [J].
Aschieri, Paolo ;
Landi, Giovanni ;
Pagani, Chiara .
JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2020, 14 (04) :1501-1559
[5]   Noncommutative Principal Bundles Through Twist Deformation [J].
Aschieri, Paolo ;
Bieliavsky, Pierre ;
Pagani, Chiara ;
Schenkel, Alexander .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 352 (01) :287-344
[6]   Noncommutative connections on bimodules and Drinfeld twist deformation [J].
Aschieri, Paolo ;
Schenkel, Alexander .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2014, 18 (03) :513-612
[7]   κ-Minkowski spacetime as the result of Jordanian twist deformation [J].
Borowiec, A. ;
Pachol, A. .
PHYSICAL REVIEW D, 2009, 79 (04)
[8]   Moduli spaces of instantons on toric noncommutative manifolds [J].
Brain, Simon ;
Landi, Giovanni ;
van Suijlekom, Walter D. .
ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2013, 17 (05) :1129-1193
[9]   MODULI SPACES OF NON-COMMUTATIVE INSTANTONS: GAUGING AWAY NON-COMMUTATIVE PARAMETERS [J].
Brain, Simon ;
Landi, Giovanni .
QUARTERLY JOURNAL OF MATHEMATICS, 2012, 63 (01) :41-86
[10]  
Brzezinski T., 1996, Journal of Geometry and Physics, V20, P349, DOI 10.1016/S0393-0440(96)00003-4