Equivalence of the Weighted Fractional Sobolev Space on a Disk with Characterization by the Decay Rate of Fourier-Jacobi Coefficients and K-Interpolation

被引:1
作者
Ervin, V. J. [1 ]
机构
[1] Clemson Univ, Sch Math & Stat Sci, Clemson, SC 29634 USA
关键词
Weighted Sobolev spaces; Fractional Laplacian; Jacobi polynomials; Spherical harmonics; SPECTRAL GALERKIN METHOD; REGULARITY; DIFFUSION; EQUATION; APPROXIMATION; LAPLACIAN; ADVECTION;
D O I
10.1007/s00041-024-10127-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, motivated by the analysis of the fractional Laplace equation on the unit disk in R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}<^>{2}$$\end{document}, we establish a characterisation of the weighted Sobolev space H gamma s(Omega)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_{\gamma }<^>{s}(\Omega )$$\end{document} in terms of the decay rate of Fourier-Jacobi coefficients. This framework is then used to give a precise analysis of the solution to the fractional Laplace equation on the unit disk.
引用
收藏
页数:27
相关论文
共 20 条