First-Principles Study of Pressure-Induced Structural Phase Transitions in BaZrO3

被引:0
|
作者
Feng, Wenxia [1 ]
机构
[1] Liaocheng Univ, Sch Phys Sci & Informat Technol, Liaocheng 252059, Peoples R China
关键词
perovskite-type oxides; phase transition; elastic properties; electronic properties; ELECTRONIC-PROPERTIES; OPTICAL-PROPERTIES; SRZRO3;
D O I
10.1134/S1063783424601632
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Perovskite BaZrO3 possesses higher phase stability from room temperature up to its melting point, yet pressure can induce phase transitions. However, detailed theoretical reports on pressure-induced transformations are scarce. We investigated the pressure-induced phase transition, elastic and electronic properties of BaZrO3 under high pressure using first-principles calculations. The findings reveal that BaZrO3 undergoes a series of structural transitions with increasing pressure, shifting from a cubic perovskite structure (Pm (3) over barm) to an orthorhombic structure (Cmcm), and subsequently to a tetragonal structure (I4/mcm). These transitions occur at pressures of 3.5 and 20 GPa, respectively. The calculated transition pressure from Cmcm to I4/mcm structure is consistent well with experimental values, and the predicted Cmcm structure should be further testified by future experimental study. At zero pressure, the mechanical stability of perovskite BaZrO3 is assessed through elastic constants. Additionally, all stable polymorphs of BaZrO3 remain insulating nature under high hydrostatic pressure. This investigation provides insight into the complex pressure-induced phase transformations in BaZrO3 and offers guidance for future experimental investigations and potential applications.
引用
收藏
页码:104 / 110
页数:7
相关论文
共 50 条
  • [31] Structural Transformation and Pressure-Induced Phase Transitions in PZT
    P. Papet
    J. Rouquette
    V. Bornand
    J. Haines
    M. Pintard
    P. Armand
    Journal of Electroceramics, 2004, 13 : 311 - 314
  • [32] Structural transformation and pressure-induced phase transitions in PZT
    Papet, P
    Rouquette, J
    Bornand, V
    Haines, J
    Pintard, M
    Armand, P
    JOURNAL OF ELECTROCERAMICS, 2004, 13 (1-3) : 311 - 314
  • [33] First-principles study of high-pressure phase transformations in LaBi
    Cui, Shouxin
    Feng, Wenxia
    Hu, Haiquan
    Feng, Zhenbao
    Liu, Hong
    SOLID STATE COMMUNICATIONS, 2009, 149 (25-26) : 996 - 999
  • [34] Structural phase transition, electronic and elastic properties of SrSe under pressure from first-principles calculations
    Shi, Liwei
    Duan, Yifeng
    Yang, Xianqing
    Qin, Lixia
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 49 (03) : 524 - 529
  • [35] First-principles study of structural phase transition, elastic and electronic properties of BaTiO3 under pressure
    Lu, Qing
    He, Cui
    Cheng, Yan
    Ji, Guangfu
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2016, 54 (02) : 91 - 98
  • [36] First-principles study of structural phase transition and electronic properties of CaO3 under high pressure
    Sun, Xiao-Wei
    Liu, Shuai-Jun
    Lei, Zhen-Shuai
    Song, Ting
    Liu, Zi-Jiang
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [37] First-principles study of the structural, elastic and electronic properties of HfTaO3N
    Liu, Qi-Jun
    Liu, Zheng-Tang
    Feng, Li-Ping
    Tian, Hao
    COMPUTATIONAL MATERIALS SCIENCE, 2010, 50 (01) : 114 - 117
  • [38] Pressure-induced structural, electronic, and superconducting phase transitions in TaSe3
    Li, Yuhang
    Zhou, Pei
    Ding, Chi
    Lu, Qing
    Wang, Xiaomeng
    Sun, Jian
    CHINESE PHYSICS B, 2024, 33 (10)
  • [39] Prediction of new high pressure phase of TaB3: First-principles
    Zhang, Xiaozheng
    Zhao, Erjun
    Wu, Zhijian
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 632 : 37 - 43
  • [40] First-principles study on the phase transitions, crystal stabilities and thermodynamic properties of TiN under high pressure
    Sun, Xinjun
    Liu, Changdong
    Guo, Yongliang
    Sun, Deyan
    Ke, Xuezhi
    PHYSICS LETTERS A, 2018, 382 (09) : 656 - 661