Style recommendation and simulation for handmade artworks using generative adversarial networks

被引:0
|
作者
Wan, Mengzhen [1 ]
Jing, Nie [1 ]
机构
[1] Hongik Univ, Dept Fine Arts, Seoul 04066, South Korea
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
Style recommendation; Simulation; Handmade artwork; Generative adversarial network; Artificial intelligence;
D O I
10.1038/s41598-024-79144-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Today, artificial intelligence (AI) is used in the design and production of artworks as a powerful tool that helps artists and designers to create more creative and attractive artworks. AI as a new tool has created new opportunities to create and improve artworks. Therefore, in this study, a new model for recommending and simulating the style of handmade artworks using generative adversarial networks (GANs) is presented. This model operates in two distinct phases: style recommendation and style simulation. The reason for using these two separate phases is to increase the accuracy and efficiency of the model. In the first phase, a pre-trained GAN is used to suggest different styles to the artist. In the second phase, a new GAN specifically designed to produce realistic images of handmade artwork is used to simulate the artist's selected style. Also, in order to improve the accuracy, the genetic algorithm (GA) was used to adjust the activity configuration of Self-Attention (SA) modules. The results of a case study on two types of data, including samples without and with the initial background pattern, GA-SAGAN model has been able to significantly reduce the validation error. As a result, adjusting the activity configuration of SA modules using GA can be effective in producing realistic and accurate artworks. The outputs produced by the GA-SAGAN model have a loss rate close to zero. Also, the Entropy values and Precision and Recall indices are higher than GAN and SAGAN models, it shows the higher diversity of production output patterns and the superiority of the proposed model.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Modular Generative Adversarial Networks
    Zhao, Bo
    Chang, Bo
    Jie, Zequn
    Sigal, Leonid
    COMPUTER VISION - ECCV 2018, PT XIV, 2018, 11218 : 157 - 173
  • [22] Detection of Adversarial DDoS Attacks Using Generative Adversarial Networks with Dual Discriminators
    Shieh, Chin-Shiuh
    Nguyen, Thanh-Tuan
    Lin, Wan-Wei
    Huang, Yong-Lin
    Horng, Mong-Fong
    Lee, Tsair-Fwu
    Miu, Denis
    SYMMETRY-BASEL, 2022, 14 (01):
  • [23] Detection of Adversarial DDoS Attacks Using Symmetric Defense Generative Adversarial Networks
    Shieh, Chin-Shiuh
    Thanh-Tuan Nguyen
    Lin, Wan-Wei
    Lai, Wei Kuang
    Horng, Mong-Fong
    Miu, Denis
    ELECTRONICS, 2022, 11 (13)
  • [24] Triple Generative Adversarial Networks
    Li, Chongxuan
    Xu, Kun
    Zhu, Jun
    Liu, Jiashuo
    Zhang, Bo
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9629 - 9640
  • [25] A Shallow Seafloor Reverberation Simulation Method Based on Generative Adversarial Networks
    Hu, Ning
    Rao, Xin
    Zhao, Jiabao
    Wu, Shengjie
    Wang, Maofa
    Wang, Yangzhen
    Qiu, Baochun
    Zhu, Zhenjing
    Chen, Zitong
    Liu, Tong
    APPLIED SCIENCES-BASEL, 2023, 13 (01):
  • [26] Global citation recommendation employing generative adversarial network
    Ali, Zafar
    Qi, Guilin
    Muhammad, Khan
    Kefalas, Pavlos
    Khusro, Shah
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 180
  • [27] SSRGAN: A Generative Adversarial Network for Streaming Sequential Recommendation
    Lv, Yao
    Xu, Jiajie
    Zhou, Rui
    Fang, Junhua
    Liu, Chengfei
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT III, 2021, 12683 : 36 - 52
  • [28] A scenario framework for electricity grid using Generative Adversarial Networks
    Yilmaz, Bilgi
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2023, 36
  • [29] Transferring multiscale map styles using generative adversarial networks
    Kang, Yuhao
    Gao, Song
    Roth, Robert E.
    INTERNATIONAL JOURNAL OF CARTOGRAPHY, 2019, 5 (2-3) : 115 - 141
  • [30] Malware Detection Using Deep Transferred Generative Adversarial Networks
    Kim, Jin-Young
    Bu, Seok-Jun
    Cho, Sung-Bae
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 556 - 564