Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet

被引:0
作者
Saliba, Nahima [1 ]
Gagliano, Gabriella [1 ,2 ,3 ]
Gustavsson, Anna-Karin [1 ,2 ,4 ,5 ,6 ,7 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Smalley Curl Inst, Houston, TX 77005 USA
[3] Rice Univ, Appl Phys Program, Houston, TX USA
[4] Rice Univ, Dept Biosci, Houston, TX 77005 USA
[5] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[6] Rice Univ, Ctr Nanoscale Imaging Sci, Houston, TX 77005 USA
[7] Univ Texas MD Anderson Canc Ctr, Dept Canc Biol, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
3-DIMENSIONAL LOCALIZATION MICROSCOPY; OBLIQUE PLANE MICROSCOPY; GLYCOLYTIC OSCILLATIONS; FIELD; DEEP; VIEW; DYNAMICS; TRACKING; EMBRYOS; DNA;
D O I
10.1038/s41467-024-54609-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multi-target single-molecule super-resolution fluorescence microscopy offers a powerful means of understanding the distributions and interplay between multiple subcellular structures at the nanoscale. However, single-molecule super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds, especially when imaging multiple targets in 3D. In this work, we have mitigated these issues by developing a steerable, dithered, single-objective tilted light sheet for optical sectioning to reduce fluorescence background and a pipeline for 3D nanoprinting microfluidic systems for reflection of the light sheet into the sample. This easily adaptable microfluidic fabrication pipeline allows for the incorporation of reflective optics into microfluidic channels without disrupting efficient and automated solution exchange. We combine these innovations with point spread function engineering for nanoscale localization of individual molecules in 3D, deep learning for analysis of overlapping emitters, active 3D stabilization for drift correction and long-term imaging, and Exchange-PAINT for sequential multi-target imaging without chromatic offsets. We then demonstrate that this platform, termed soTILT3D, enables whole-cell multi-target 3D single-molecule super-resolution imaging with improved precision and imaging speed. Super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds. Here, the authors present soTILT3D, a platform based on a steerable single-objective light sheet with nanoprinted microfluidics for flexible whole-cell, multi-target, 3D single-molecule imaging.
引用
收藏
页数:17
相关论文
共 79 条
  • [11] Ultraprecise single-molecule localization microscopy enables in situ distance measurements in intact cells[J]. Coelho, Simao;Baek, Jongho;Graus, Matthew S.;Halstead, James M.;Nicovich, Philip R.;Feher, Kristen;Gandhi, Hetvi;Gooding, J. Justin;Gaus, Katharina. SCIENCE ADVANCES, 2020(16)
  • [12] Optically sectioned imaging by oblique plane microscopy[J]. Dunsby, C. OPTICS EXPRESS, 2008(25)
  • [13] Peptide-PAINT Super-Resolution Imaging Using Transient Coiled Coil Interactions[J]. Eklund, Alexandra S.;Ganji, Mahipal;Gavins, Georgina;Seitz, Oliver;Jungmann, Ralf. NANO LETTERS, 2020(09)
  • [14] LITE microscopy: Tilted light-sheet excitation of model organisms offers high resolution and low photobleaching[J]. Fadero, Tanner C.;Gerbich, Therese M.;Rana, Kishan;Suzuki, Aussie;DiSalvo, Matthew;Schaefer, Kristina N.;Heppert, Jennifer K.;Boothby, Thomas C.;Goldstein, Bob;Peifer, Mark;Allbritton, Nancy L.;Gladfelter, Amy S.;Maddox, Amy S.;Maddox, Paul S. JOURNAL OF CELL BIOLOGY, 2018(05)
  • [15] Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses[J]. Gagliano, Gabriella;Nelson, Tyler;Saliba, Nahima;Vargas-Hernandez, Sofia;Gustavsson, Anna-Karin. FRONTIERS IN SYNAPTIC NEUROSCIENCE, 2021
  • [16] Galgani T, 2022, bioRxiv, DOI [10.1101/2022.12.02.518828, 10.1101/2022.12.02.518828, DOI 10.1101/2022.12.02.518828]
  • [17] Galland R, 2015, NAT METHODS, V12, P641, DOI [10.1038/nmeth.3402, 10.1038/NMETH.3402]
  • [18] Gebhardt JCM, 2013, NAT METHODS, V10, P421, DOI [10.1038/NMETH.2411, 10.1038/nmeth.2411]
  • [19] Single Plane Illumination Microscopy for Microfluidic Device Imaging[J]. Gomez-Cruz, Clara;Laguna, Sonia;Bachiller-Pulido, Ariadna;Quilez, Cristina;Canadas-Ortega, Marina;Albert-Smet, Ignacio;Ripoll, Jorge;Munoz-Barrutia, Arrate. BIOSENSORS-BASEL, 2022(12)
  • [20] Greiss F., 2016, BIOPHYS J, V110, P939