Whole-cell multi-target single-molecule super-resolution imaging in 3D with microfluidics and a single-objective tilted light sheet

被引:0
作者
Saliba, Nahima [1 ]
Gagliano, Gabriella [1 ,2 ,3 ]
Gustavsson, Anna-Karin [1 ,2 ,4 ,5 ,6 ,7 ]
机构
[1] Rice Univ, Dept Chem, Houston, TX 77005 USA
[2] Rice Univ, Smalley Curl Inst, Houston, TX 77005 USA
[3] Rice Univ, Appl Phys Program, Houston, TX USA
[4] Rice Univ, Dept Biosci, Houston, TX 77005 USA
[5] Rice Univ, Dept Elect & Comp Engn, Houston, TX 77005 USA
[6] Rice Univ, Ctr Nanoscale Imaging Sci, Houston, TX 77005 USA
[7] Univ Texas MD Anderson Canc Ctr, Dept Canc Biol, Houston, TX 77030 USA
基金
美国国家卫生研究院;
关键词
3-DIMENSIONAL LOCALIZATION MICROSCOPY; OBLIQUE PLANE MICROSCOPY; GLYCOLYTIC OSCILLATIONS; FIELD; DEEP; VIEW; DYNAMICS; TRACKING; EMBRYOS; DNA;
D O I
10.1038/s41467-024-54609-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multi-target single-molecule super-resolution fluorescence microscopy offers a powerful means of understanding the distributions and interplay between multiple subcellular structures at the nanoscale. However, single-molecule super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds, especially when imaging multiple targets in 3D. In this work, we have mitigated these issues by developing a steerable, dithered, single-objective tilted light sheet for optical sectioning to reduce fluorescence background and a pipeline for 3D nanoprinting microfluidic systems for reflection of the light sheet into the sample. This easily adaptable microfluidic fabrication pipeline allows for the incorporation of reflective optics into microfluidic channels without disrupting efficient and automated solution exchange. We combine these innovations with point spread function engineering for nanoscale localization of individual molecules in 3D, deep learning for analysis of overlapping emitters, active 3D stabilization for drift correction and long-term imaging, and Exchange-PAINT for sequential multi-target imaging without chromatic offsets. We then demonstrate that this platform, termed soTILT3D, enables whole-cell multi-target 3D single-molecule super-resolution imaging with improved precision and imaging speed. Super-resolution imaging of whole mammalian cells is often hampered by high fluorescence background and slow acquisition speeds. Here, the authors present soTILT3D, a platform based on a steerable single-objective light sheet with nanoprinted microfluidics for flexible whole-cell, multi-target, 3D single-molecule imaging.
引用
收藏
页数:17
相关论文
共 79 条
  • [2] Bayas C. A., 2019, Protoc. Exch., DOI DOI 10.21203/RS.2.9151/V2
  • [3] Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification
    Beghin, Anne
    Grenci, Gianluca
    Sahni, Geetika
    Guo, Su
    Rajendiran, Harini
    Delaire, Tom
    Raffi, Saburnisha Binte Mohamad
    Blanc, Damien
    de Mets, Richard
    Ong, Hui Ting
    Galindo, Xareni
    Monet, Anais
    Acharya, Vidhyalakshmi
    Racine, Victor
    Levet, Florian
    Galland, Remi
    Sibarita, Jean-Baptiste
    Viasnoff, Virgile
    [J]. NATURE METHODS, 2022, 19 (07) : 881 - +
  • [4] Bennett HW., 2020, MOL BIOL CELL, V31, P619
  • [5] Bratton B.P., 2015, PLOS ONE, V10, pe0134616
  • [6] Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super-Resolution STED Microscopy in Living Cells
    Butkevich, Alexey N.
    Mitronova, Gyuzel Yu
    Sidenstein, Sven C.
    Klocke, Jessica L.
    Kamin, Dirk
    Meineke, Dirk N. H.
    D'Este, Elisa
    Kraemer, Philip-Tobias
    Danzl, Johann G.
    Belov, Vladimir N.
    Hell, Stefan W.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (10) : 3290 - 3294
  • [7] Lattice light-sheet microscopy: Imaging molecules to embryos at high spatiotemporal resolution
    Chen, Bi-Chang
    Legant, Wesley R.
    Wang, Kai
    Shao, Lin
    Milkie, Daniel E.
    Davidson, Michael W.
    Janetopoulos, Chris
    Wu, Xufeng S.
    Hammer, John A., III
    Liu, Zhe
    English, Brian P.
    Mimori-Kiyosue, Yuko
    Romero, Daniel P.
    Ritter, Alex T.
    Lippincott-Schwartz, Jennifer
    Fritz-Laylin, Lillian
    Mullins, R. Dyche
    Mitchell, Diana M.
    Bembenek, Joshua N.
    Reymann, Anne-Cecile
    Boehme, Ralph
    Grill, Stephan W.
    Wang, Jennifer T.
    Seydoux, Geraldine
    Tulu, U. Serdar
    Kiehart, Daniel P.
    Betzig, Eric
    [J]. SCIENCE, 2014, 346 (6208) : 439 - +
  • [8] Increasing the field- of- view in oblique plane microscopy via optical tiling
    Chen, Bingying
    Chang, Bo-Jui
    Zhou, Felix Y.
    Daetwyler, Stephan
    Sapoznik, Etai
    Nanes, Benjamin A.
    Terrazas, Isabella
    Gihana, Gabriel M.
    Castro, Lizbeth Perez
    Chan, Isaac S.
    Conacci-Sorrell, Maralice
    Dean, Kevin M.
    Millett-Sikking, Alfred
    York, Andrew G.
    Fiolka, Reto
    [J]. BIOMEDICAL OPTICS EXPRESS, 2022, 13 (11) : 5616 - 5627
  • [9] Resolution doubling in light-sheet microscopy via oblique plane structured illumination
    Chen, Bingying
    Chang, Bo-Jui
    Roudot, Philippe
    Zhou, Felix
    Sapoznik, Etai
    Marlar-Pavey, Madeleine
    Hayes, James B.
    Brown, Peter T.
    Zeng, Chih-Wei
    Lambert, Talley
    Friedman, Jonathan R.
    Zhang, Chun-Li
    Burnette, Dylan T.
    Shepherd, Douglas P.
    Dean, Kevin M.
    Fiolka, Reto P.
    [J]. NATURE METHODS, 2022, 19 (11) : 1419 - +
  • [10] Fluorogenic DNA-PAINT for faster, low-background super-resolution imaging
    Chung, Kenny K. H.
    Zhang, Zhao
    Kidd, Phylicia
    Zhang, Yongdeng
    Williams, Nathan D.
    Rollins, Bennett
    Yang, Yang
    Lin, Chenxiang
    Baddeley, David
    Bewersdorf, Joerg
    [J]. NATURE METHODS, 2022, 19 (05) : 554 - +