Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings

被引:0
|
作者
Kiran, Raj [1 ]
Choudhary, Krishana [1 ]
Nguyen-Thanh, Nhon [2 ,3 ]
机构
[1] Indian Inst Technol Mandi Himachal Pradesh, Sch Mech & Mat Engn, Mandi 175005, Himachal Prades, India
[2] Ton Duc Thang Univ, Inst Adv Study Technol, Lab Adv Mat & Struct, Ho Chi Minh City, Vietnam
[3] Ton Duc Thang Univ, Fac Civil Engn, Ho Chi Minh City, Vietnam
关键词
Phase-field modeling; Polycrystalline; Adaptive mesh refinement; Isogeometric analysis; Thermal effects; FINITE-ELEMENT-METHOD; GRAIN LEVEL MODEL; CRACK-PROPAGATION; ISOGEOMETRIC ANALYSIS; FAILURE INITIATION; SIMULATION; IMPLEMENTATION; APPROXIMATION; REFINEMENT; EVOLUTION;
D O I
10.1016/j.compstruc.2025.107651
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Phase-field modeling, owing to the regularized representation of discrete crack topologies, provides an efficient and robust framework for simulating complex fracture mechanisms in brittle materials. This study proposes an adaptive isogeometric-based approach to comprehend the fracture behaviour of polycrystalline materials under different thermo-mechanical loadings. The model considers anisotropy in the fracture resistance to examine intergranular and transgranular fracture mechanisms in polycrystalline materials. The individual grains in the morphology are modelled as anisotropic linear elastic domains possessing random preferential cleavage orientations. The present adaptive isogeometric framework uses polynomial splines over hierarchical T-meshes which offers an efficient adaptive mesh refinement scheme employing the phase-field parameter as an error indicator. Additionally, a hybrid-staggered scheme is implemented where the displacement field is computed using an isotropic model (no tension-compression splitting), while the phase-field parameter is evaluated based on an anisotropic model (with tension-compression splitting). The effect of thermo-mechanical coupling is examined on the fracture loads, and it is observed that the effects of temperature on the fracture loads are insignificant, however, it may accelerate or delay the fracture process. A series of numerical examples dealing with the fracture behaviour of single crystal, bicrystals, and polycrystalline domains are presented to showcase the robustness and capability of the present adaptive isogeometric framework.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A hybrid thermo-mechanical phase-field model for anisotropic brittle fracture
    Li, Weidong
    Li, Peidong
    Nguyen-Thanh, Nhon
    Zhou, Kun
    ENGINEERING FRACTURE MECHANICS, 2024, 306
  • [2] Phase-field modeling of anisotropic brittle fracture in rock-like materials and polycrystalline materials
    Nguyen-Thanh, Nhon
    Nguyen-Xuan, Hung
    Li, Weidong
    COMPUTERS & STRUCTURES, 2024, 296
  • [3] Adaptive higher-order phase -field modeling of anisotropic brittle fracture in 3D polycrystalline materials
    Nhon Nguyen-Thanh
    Li, Weidong
    Huang, Jiazhao
    Zhou, Kun
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 372
  • [4] Deterministic and stochastic phase-field modeling of anisotropic brittle fracture
    Nagaraja, Sindhu
    Roemer, Ulrich
    Matthies, Hermann G.
    De Lorenzis, Laura
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 408
  • [5] Phase-field modeling and simulation of fracture in brittle materials with strongly anisotropic surface energy
    Li, Bin
    Peco, Christian
    Millan, Daniel
    Arias, Irene
    Arroyo, Marino
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 102 (3-4) : 711 - 727
  • [6] A phase-field model for thermo-mechanical fracture
    Prakash, Ved
    Behera, Akash Kumar
    Rahaman, Mohammad Masiur
    MATHEMATICS AND MECHANICS OF SOLIDS, 2023, 28 (02) : 533 - 561
  • [7] Phase-field modeling of fracture for quasi-brittle materials
    Ulloa, Jacinto
    Rodriguez, Patricio
    Samaniego, Cristobal
    Samaniego, Esteban
    UNDERGROUND SPACE, 2019, 4 (01) : 10 - 21
  • [8] Experimental characterization and phase-field modeling of anisotropic brittle fracture in silicon
    Nagaraja, Sindhu
    Carrara, Pietro
    De Lorenzis, Laura
    ENGINEERING FRACTURE MECHANICS, 2023, 293
  • [9] Phase-Field Modeling Fracture in Anisotropic Materials
    Li, Haifeng
    Wang, Wei
    Cao, Yajun
    Liu, Shifan
    ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [10] Effects of cleavage plane and material strength on fracture of polycrystalline brittle materials: A phase-field modeling study
    Lotfolahpour, Amirreza
    Zaeem, Mohsen Asle
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 197