The role of lactate metabolism and lactylation in pulmonary arterial hypertension

被引:1
作者
Peng, Tong-yu [1 ]
Lu, Jun-mi [2 ]
Zheng, Xia-lei [1 ]
Zeng, Cheng [1 ]
He, Yu-hu [1 ]
机构
[1] Cent South Univ, Xiangya Hosp 2, Dept Cardiol, Changsha 410011, Hunan, Peoples R China
[2] Cent South Univ, Xiangya Hosp 2, Dept Pathol, Changsha 410011, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Pulmonary arterial hypertension; Glycolysis; Lactate; Lactylation; Protein translational modifications; SMOOTH-MUSCLE-CELLS; CONGENITAL HEART-DISEASE; NITRIC-OXIDE SYNTHASE; GATED K+ CHANNELS; ENDOTHELIAL DYSFUNCTION; MACROPHAGE PHENOTYPE; THERAPEUTIC TARGET; IN-VITRO; EXPRESSION; GLYCOLYSIS;
D O I
10.1186/s12931-025-03163-3
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Pulmonary arterial hypertension (PAH) is a complex and progressive disease characterized by elevated pulmonary artery pressure and vascular remodeling. Recent studies have underscored the pivotal role of metabolic dysregulation and epigenetic modifications in the pathogenesis of PAH. Lactate, a byproduct of glycolysis, is now recognized as a key molecule that links cellular metabolism with activity regulation. Recent findings indicate that, in addition to altered glycolytic activity and dysregulated. Lactate homeostasis and lactylation-a novel epigenetic modification-also play a significant role in the development of PAH. This review synthesizes current knowledge regarding the relationship between altered glycolytic activity and PAH, with a particular focus on the cumulative effects of lactate in pulmonary vascular cells. Furthermore, lactylation, an emerging epigenetic modification, is discussed in the context of PAH. By elucidating the complex interplay between lactate metabolism and lactylation in PAH, this review aims to provide insights into potential therapeutic targets. Understanding these metabolic pathways may lead to innovative strategies for managing PAH and improving patient outcomes. Future research should focus on the underlying mechanisms through which lactylation influences the pathophysiology of PAH, thereby aiding in the development of targeted interventions.
引用
收藏
页数:27
相关论文
共 248 条
[1]   CCR2/CCR5-mediated macrophage-smooth muscle cell crosstalk in pulmonary hypertension [J].
Abid, Shariq ;
Marcos, Elisabeth ;
Parpaleix, Aurelien ;
Amsellem, Valerie ;
Breau, Marielle ;
Houssaini, Amal ;
Vienney, Nora ;
Lefevre, Marine ;
Derumeaux, Genevieve ;
Evans, Steven ;
Hubeau, Cedric ;
Delcroix, Marion ;
Quarck, Rozenn ;
Adnot, Serge ;
Lipskaia, Larissa .
EUROPEAN RESPIRATORY JOURNAL, 2019, 54 (04)
[2]   Simultaneous Pharmacologic Inhibition of Yes-Associated Protein 1 and Glutaminase 1 via Inhaled Poly(Lactic-co-Glycolic) Acid-Encapsulated Microparticles Improves Pulmonary Hypertension [J].
Acharya, Abhinav P. ;
Tang, Ying ;
Bertero, Thomas ;
Tai, Yi-Yin ;
Harvey, Lloyd D. ;
Woodcock, Chen-Shan C. ;
Sun, Wei ;
Pineda, Ricardo ;
Mitash, Nilay ;
Konigshoff, Melanie ;
Little, Steven R. ;
Chan, Stephen Y. .
JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2021, 10 (12)
[3]   Pulmonary hypertension in patients with chronic myeloproliferative disorders [J].
Adir, Y. ;
Humbert, M. .
EUROPEAN RESPIRATORY JOURNAL, 2010, 35 (06) :1396-1406
[4]   Evidence for Hypoxia-Induced Shift in ATP Production from Glycolysis to Mitochondrial Respiration in Pulmonary Artery Smooth Muscle Cells in Pulmonary Arterial Hypertension [J].
Akagi, Satoshi ;
Nakamura, Kazufumi ;
Kondo, Megumi ;
Hirohata, Satoshi ;
Udono, Heiichiro ;
Nishida, Mikako ;
Saito, Yukihiro ;
Yoshida, Masashi ;
Miyoshi, Toru ;
Ito, Hiroshi .
JOURNAL OF CLINICAL MEDICINE, 2023, 12 (15)
[5]   Activation of Anoctamin-1 Limits Pulmonary Endothelial Cell Proliferation via p38-Mitogen-activated Protein Kinase-Dependent Apoptosis [J].
Allawzi, Ayed M. ;
Vang, Alexander ;
Clements, Richard T. ;
Jhun, Bong Sook ;
Kue, Nouaying R. ;
Mancini, Thomas J. ;
Landi, Amy K. ;
Terentyev, Dmitry ;
O-Uchi, Jin ;
Comhair, Suzy A. ;
Erzurum, Serpil C. ;
Choudhary, Gaurav .
AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2018, 58 (05) :658-667
[6]   In search of pulmonary hypertension treatments: Effect of 17β-estradiol on PGI2 pathway in human pulmonary artery [J].
Amgoud, Yasmine ;
Senbel, Amira ;
Bouhadoun, Amel ;
Abdelazeem, Heba ;
Ozen, Gulsev ;
Savane, Ines ;
Manikpurage, Hasanga D. ;
Mani, Salma ;
Tran-Dinh, Alexy ;
Castier, Yves ;
Guyard, Alice ;
Longrois, Dan ;
Silverstein, Adam M. ;
Norel, Xavier .
PROSTAGLANDINS LEUKOTRIENES AND ESSENTIAL FATTY ACIDS, 2021, 172
[7]  
[Anonymous], 2013, N Engl J Med, V369, P2161
[8]   Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension [J].
Antigny, Fabrice ;
Hautefort, Aurelie ;
Meloche, Jolyane ;
Belacel-Ouari, Milia ;
Manoury, Boris ;
Rucker-Martin, Catherine ;
Pechoux, Christine ;
Potus, Francois ;
Nadeau, Valerie ;
Tremblay, Eve ;
Ruffenach, Gregoire ;
Bourgeois, Alice ;
Dorfmueller, Peter ;
Breuils-Bonnet, Sandra ;
Fadel, Elie ;
Ranchoux, Benoit ;
Jourdon, Philippe ;
Girerd, Barbara ;
Montani, David ;
Provencher, Steeve ;
Bonnet, Sebastien ;
Simonneau, Gerald ;
Humbert, Marc ;
Perros, Frederic .
CIRCULATION, 2016, 133 (14) :1371-1385
[9]   Molecular identification of the role of voltage-gated K+ channels, Kv1.5 and Kv2.1, in hypoxic pulmonary vasoconstriction and control of resting membrane potential in rat pulmonary artery myocytes [J].
Archer, SL ;
Souil, E ;
Dinh-Xuan, AT ;
Schremmer, B ;
Mercier, JC ;
El Yaagoubi, A ;
Nguyen-Huu, L ;
Reeve, HL ;
Hampl, V .
JOURNAL OF CLINICAL INVESTIGATION, 1998, 101 (11) :2319-2330
[10]   Mitochondrial Dynamics - Mitochondrial Fission and Fusion in Human Diseases [J].
Archer, Stephen L. .
NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (23) :2236-2251