Ferroelectricity with concomitant Coulomb screening in van der Waals heterostructures

被引:0
|
作者
Niu, Ruirui [1 ]
Li, Zhuoxian [1 ]
Han, Xiangyan [1 ]
Qu, Zhuangzhuang [1 ]
Liu, Qianling [1 ]
Wang, Zhiyu [1 ]
Han, Chunrui [2 ]
Wang, Chunwen [3 ,4 ]
Wu, Yangliu [5 ]
Yang, Chendi [6 ]
Lv, Ming [7 ]
Yang, Kaining [8 ]
Watanabe, Kenji [9 ]
Taniguchi, Takashi [9 ]
Liu, Kaihui [1 ]
Mao, Jinhai [10 ,11 ]
Shi, Wu [12 ,13 ,14 ]
Che, Renchao [6 ]
Zhou, Wu [3 ,4 ]
Xue, Jiamin [7 ]
Wu, Menghao [15 ]
Peng, Bo [5 ]
Han, Zheng Vitto [8 ,16 ]
Gan, Zizhao [1 ]
Lu, Jianming [1 ]
机构
[1] Peking Univ, Sch Phys, State Key Lab Mesoscop Phys, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Microelect, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, CAS Key Lab Vacuum Phys, Beijing, Peoples R China
[5] Univ Elect Sci & Technol China, Natl Engn Res Ctr Electromagnet Radiat Control Mat, Sch Elect Sci & Engn, Chengdu 611731, Peoples R China
[6] Fudan Univ, Collaborat Innovat Ctr Chem Energy Mat iChEM, Dept Mat Sci, Lab Adv Mat, Shanghai 200433, Peoples R China
[7] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai, Peoples R China
[8] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan, Peoples R China
[9] Natl Inst Mat Sci, Tsukuba, Japan
[10] Univ Chinese Acad Sci, Sch Phys Sci, Beijing, Peoples R China
[11] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing, Peoples R China
[12] Fudan Univ, State Key Lab Surface Phys, Shanghai, Peoples R China
[13] Fudan Univ, Inst Nanoelect Devices & Quantum Comp, Shanghai, Peoples R China
[14] Fudan Univ, Zhangjiang Fudan Int Innovat Ctr, Shanghai, Peoples R China
[15] Huazhong Univ Sci & Technol, Sch Phys, Wuhan, Peoples R China
[16] Liaoning Acad Mat, Shenyang, Peoples R China
基金
国家重点研发计划; 上海市自然科学基金; 北京市自然科学基金;
关键词
FEW-LAYER; GROWTH; BILAYER; SPIRALS; DRIVEN;
D O I
10.1038/s41565-024-01846-4
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Interfacial ferroelectricity emerges in non-centrosymmetric heterostructures consisting of non-polar van der Waals (vdW) layers. Ferroelectricity with concomitant Coulomb screening can switch topological currents or superconductivity and simulate synaptic response. So far, it has only been realized in bilayer graphene moir & eacute; superlattices, posing stringent requirements to constituent materials and twist angles. Here we report ferroelectricity with concomitant Coulomb screening in different vdW heterostructures free of moir & eacute; interfaces containing monolayer graphene, boron nitride (BN) and transition metal chalcogenide layers. We observe a ferroelectric hysteretic response in a BN/monolayer graphene/BN, as well as in BN/WSe2/monolayer graphene/WSe2/BN heterostructure, but also when replacing the stacking fault-containing BN with multilayer twisted MoS2, a prototypical sliding ferroelectric. Our control experiments exclude alternative mechanisms, such that we conclude that ferroelectricity originates from stacking faults in the BN flakes. Hysteretic switching occurs when a conductive ferroelectric screens the gating field electrically and controls the monolayer graphene through its polarization field. Our results relax some of the material and design constraints for device applications based on sliding ferroelectricity and should enable memory device or the combination with diverse vdW materials with superconducting, topological or magnetic properties.
引用
收藏
页码:346 / 352
页数:8
相关论文
共 50 条
  • [31] Devices and applications of van der Waals heterostructures
    Chao Li
    Peng Zhou
    David Wei Zhang
    Journal of Semiconductors, 2017, 38 (03) : 48 - 56
  • [32] Strain engineering of van der Waals heterostructures
    Vermeulen, Paul A.
    Mulder, Jefta
    Momand, Jamo
    Kooi, Bart J.
    NANOSCALE, 2018, 10 (03) : 1474 - 1480
  • [33] Dielectric Genome of van der Waals Heterostructures
    Andersen, Kirsten
    Latini, Simone
    Thygesen, Kristian S.
    NANO LETTERS, 2015, 15 (07) : 4616 - 4621
  • [34] Exciton landscape in van der Waals heterostructures
    Hagel, Joakim
    Brem, Samuel
    Linderalv, Christopher
    Erhart, Paul
    Malic, Ermin
    PHYSICAL REVIEW RESEARCH, 2021, 3 (04):
  • [35] Multiferroicity in atomic van der Waals heterostructures
    Gong, Cheng
    Kim, Eun Mi
    Wang, Yuan
    Lee, Geunsik
    Zhang, Xiang
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [36] Fabrication and applications of van der Waals heterostructures
    Qi, Junlei
    Wu, Zongxiao
    Wang, Wenbin
    Bao, Kai
    Wang, Lingzhi
    Wu, Jingkun
    Ke, Chengxuan
    Xu, Yue
    He, Qiyuan
    INTERNATIONAL JOURNAL OF EXTREME MANUFACTURING, 2023, 5 (02)
  • [37] Quantum microscopy with van der Waals heterostructures
    Healey, A. J.
    Scholten, S. C.
    Yang, T.
    Scott, J. A.
    Abrahams, G. J.
    Robertson, I. O.
    Hou, X. F.
    Guo, Y. F.
    Rahman, S.
    Lu, Y.
    Kianinia, M.
    Aharonovich, I
    Tetienne, J-P
    NATURE PHYSICS, 2023, 19 (01) : 87 - +
  • [38] Interfaces and heterostructures of van der Waals materials
    Asensio, Maria C.
    Batzill, Matthias
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (49)
  • [39] Picosecond photoresponse in van der Waals heterostructures
    Massicotte M.
    Schmidt P.
    Vialla F.
    Schädler K.G.
    Reserbat-Plantey A.
    Watanabe K.
    Taniguchi T.
    Tielrooij K.J.
    Koppens F.H.L.
    Nature Nanotechnology, 2016, 11 (1) : 42 - 46
  • [40] Ultrafast dynamics in van der Waals heterostructures
    Chenhao Jin
    Eric Yue Ma
    Ouri Karni
    Emma C. Regan
    Feng Wang
    Tony F. Heinz
    Nature Nanotechnology, 2018, 13 : 994 - 1003