Real-time RGBT tracking via isometric feature encoding networking

被引:0
作者
Gao, Zhao [1 ]
Zhou, Dongming [1 ,2 ]
Yan, Kaixiang [1 ]
Liu, Yisong [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650500, Yunnan, Peoples R China
[2] Hunan Univ informat Technol, Sch Elect Sci & Engn, Changsha 410100, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Isomeric feature; Dual-modality; RGBT tracking; Real-time tracking;
D O I
10.1007/s11760-024-03658-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
To efficiently utilize the complementary attributes in RGBT images, we proposes an object tracking algorithm called Isomeric Feature Encoding Network (IFENet). Based on the different characteristics of RGBT images, IFENet employs the global-memory enhancement (GME) in the early stage of image feature encoding to explore detailed information (such as texture and color) in the RGB modality. It also utilizes the border-region salience enhancement (BRE) to improve the saliency difference between the object region and the background. Furthermore, an interest region sampling is introduced to reduce computational consumption and improve the operational efficiency. Validation results on the open-source datasets demonstrate the effectiveness of IFENet. Compared to current mainstream RGBT tracking algorithms, IFENet achieves better tracking accuracy and robustness. It can effectively handle challenging scenarios such as fast-moving objects, large-scale deformations, and camera motion. Moreover, IFENet achieves an average tracking speed of 62FPS, meeting real-time tracking requirements.
引用
收藏
页数:10
相关论文
共 40 条
  • [1] Fully-Convolutional Siamese Networks for Object Tracking
    Bertinetto, Luca
    Valmadre, Jack
    Henriques, Joao F.
    Vedaldi, Andrea
    Torr, Philip H. S.
    [J]. COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 : 850 - 865
  • [2] Efficient Visual Tracking with Exemplar Transformers
    Blatter, Philippe
    Kanakis, Menelaos
    Danelljan, Martin
    Van Gool, Luc
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 1571 - 1581
  • [3] Chenglong Li, 2020, Computer Vision - ECCV 2020 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12367), P222, DOI 10.1007/978-3-030-58542-6_14
  • [4] Siamese Cascaded Region Proposal Networks for Real-Time Visual Tracking
    Fan, Heng
    Ling, Haibin
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 7944 - 7953
  • [5] Learning reliable modal weight with transformer for robust RGBT tracking
    Feng, Mingzheng
    Su, Jianbo
    [J]. KNOWLEDGE-BASED SYSTEMS, 2022, 249
  • [6] Deep Adaptive Fusion Network for High Performance RGBT Tracking
    Gao, Yuan
    Li, Chenglong
    Zhu, Yabin
    Tang, Jin
    He, Tao
    Wang, Futian
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 91 - 99
  • [7] Struck: Structured Output Tracking with Kernels
    Hare, Sam
    Golodetz, Stuart
    Saffari, Amir
    Vineet, Vibhav
    Cheng, Ming-Ming
    Hicks, Stephen L.
    Torr, Philip H. S.
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (10) : 2096 - 2109
  • [8] RGB-T object tracking via sparse response-consistency discriminative correlation filters
    Huang, Yueping
    Li, Xiaofeng
    Lu, Ruitao
    Qi, Naixin
    [J]. INFRARED PHYSICS & TECHNOLOGY, 2023, 128
  • [9] Jung I., 2018, P EUR C COMP VIS ECC, P83
  • [10] Multi-Adapter RGBT Tracking
    Li, Chenglong
    Lu, Andong
    Zheng, Aihua
    Tu, Zhengzheng
    Tang, Jin
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 2262 - 2270