A Criterion of Properness for a Family of Functions

被引:0
作者
A. V. Galatenko [1 ]
A. E. Pankratiev [1 ]
K. D. Tsaregorodtsev [1 ]
机构
[1] Lomonosov Moscow State University, Moscow
[2] JSRPC “Kryptonite”, Moscow
关键词
D O I
10.1007/s10958-024-07363-y
中图分类号
学科分类号
摘要
Proper families of functions are a convenient apparatus for specification of large parametric classes of quasigroups and n-quasigroups. K. D. Tsaregorodtsev noticed that in the Boolean case a family is proper if and only if every mapping specified by the family or any of its subfamilies has a unique fixed point. We extend this result to the case of k-valued logics for k > 2. We also show that reencoding transformations used in the extended criterion enriched (in terms of composition) with consistent renumbering of variables and functions form the stabilizer of the set of all proper families of the given size. © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024.
引用
收藏
页码:451 / 459
页数:8
相关论文
共 20 条
  • [1] Bruner R., De Winter S., Weak isometries of Hamming spaces, J. Algebra Combin. Discrete Struct. Appl, 3, 3, pp. 209-216, (2016)
  • [2] Chakrabarti S., Galatenko A.V., Nosov V.A., Pankratiev A.E., Tiwari S.K., Quasigroups generated by shift registers and Feistel networks, Quasigroups and related systems, 31, 2, pp. 207-220, (2023)
  • [3] Chauhan D., Gupta I., Verma R., Quasigroups and their applications in cryptography, Cryptologia, 45, 3, pp. 227-265, (2021)
  • [4] Chirivi R., The Isometry Group for the Hamming Distance
  • [5] De Winter S., Korb M., Weak isometries of the Boolean cube, Discrete Math, 339, 2, pp. 877-885, (2016)
  • [6] Galatenko A.V., Nosov V.A., Pankratiev A.E., Latin squares over quasigroups, Lobachevskii J. Math, 41, 2, pp. 194-203, (2020)
  • [7] Galatenko A.V., Nosov V.A., Pankratiev A.E., Tsaregorodtsev K.D., Generation of nquasigroups by proper families of functions, Diskret. Matem, 35, 1, pp. 35-53, (2023)
  • [8] Galatenko A.V., Nosov V.A., Pankratiev A.E., Tsaregorodtsev K.D., Proper families of functions and their applications, Matem. Vopr. Kriptogr, 14, 2, pp. 43-58, (2023)
  • [9] Galatenko A.V., Pankratiev A.E., Staroverov V.M., Generation of proper families of functions, Lobachevskii J. Math, 43, 3, pp. 571-581, (2022)
  • [10] Glukhov M.M., Some applications of quasigroups in cryptography, Prikl. Diskr. Matem., No. 2, pp. 28-32, (2008)