Determination of class numbers of imaginary cyclic quartic number fields and cyclotomic fields

被引:0
作者
Ram, Mahesh Kumar [1 ]
机构
[1] Natl Inst Sci Educ & Res, Jatni, Bhubaneswar, India
关键词
Residue degree; Class groups; Class numbers;
D O I
10.1007/s11139-025-01058-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let m>1 be a square-free integer such that each prime divisor of m is congruent to 3 modulo 4. We show that there is no imaginary cyclic quartic number field whose class number is m. Additionally, we show that this result also holds for certain types of cyclotomic fields.
引用
收藏
页数:7
相关论文
共 14 条
[1]  
HARDY K, 1989, T AM MATH SOC, V311, P1
[2]   A NOTE ON IDEAL CLASS GROUPS [J].
IWASAWA, K .
NAGOYA MATHEMATICAL JOURNAL, 1966, 27 (01) :239-&
[3]  
Lemmermeyer F, 2013, J RAMANUJAN MATH SOC, V28, P415
[4]  
Masley J., 1972, On the class number of cyclotomic fields
[5]   SOLUTION OF CLASS NUMBER 2 PROBLEM FOR CYCLOTOMIC FIELDS [J].
MASLEY, JM .
INVENTIONES MATHEMATICAE, 1975, 28 (03) :243-244
[6]  
MASLEY JM, 1976, COMPOS MATH, V33, P179
[7]  
MASLEY JM, 1976, J REINE ANGEW MATH, V287, P248
[8]  
Pandey P.P., 2023, Primes of higher degree
[9]  
Pandey PP, 2019, J RAMANUJAN MATH SOC, V34, P143
[10]  
Ram M.K., 2023, Two approaches to study class groups, DOI [10.13140/RG.2.2.20432.52486, DOI 10.13140/RG.2.2.20432.52486]