Deep Eutectic Solvent Pre-treated Sweet Sorghum Stalk (Sorghum Bicolor (L.) Moench) Nanocellulose and Its Application to Agar-Based Bioplastics

被引:2
作者
Afni, Nanda Nur [1 ]
Kusumaningrum, Wida Banar [2 ]
Hermawan, Dede [1 ]
Nurhamiyah, Yeyen [2 ]
Nurhayat, Oktan Dwi [3 ]
Dimyati, Arbi [4 ]
机构
[1] IPB Univ, Forest Prod Sci & Technol Study Program, Fac Forestry & Environm, Jl Raya Dramaga, Bogor, Indonesia
[2] Res Ctr Biomass & Bioprod, Natl Res & Innovat Agcy, Jl Raya Jakarta Bogor KM 48, Bogor, Indonesia
[3] Natl Agcy Res & Innovat, Res Ctr Appl Microbiol, Jl Raya Bogor,Km 46, Bogor, Indonesia
[4] Natl Res & Innovat Agcy, Res Ctr Nucl Radiat Detect & Anal Technol, Jl Raya Jakarta Bogor KM 48, Bogor, Indonesia
关键词
Active packaging; Agar; Bioplastics; Deep eutectic solvents; Nanocellulose; CELLULOSE NANOCRYSTALS; HYDROLYSIS; NANOCOMPOSITES; COMPOSITES; EXTRACTION; STABILITY; GLYCEROL;
D O I
10.1007/s12649-024-02774-z
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Nanocellulose is already established as a reinforcing agent in bioplastics. Sorghum stalk, an underutilized source of cellulose despite its high cellulose content and abundance, is put to use in this study. An alternative, more environmentally friendly isolation method using a deep eutectic solvent (DES) consisting of an oxalic acid/choline chloride (ChCl) mixture is similarly put to test. This study thus aims to investigate the effect of the addition of nanocellulose from this alternative source and isolation method on the characteristics of agar-based bioplastics. Using a previously established optimal oxalic acid:ChCl ratio of 1:1 resulted in cellulose nanofibrils (CNF) with a yield of 61.50%, zeta potential of - 21.7 mV, average diameter of 55.53 +/- 2.89 nm, transparency of 0.035% and the highest degradation temperature compared to other tested ratios. When this nanocellulose was incorporated into agar-based bioplastics, the resulting bioplastic showed a significant (at p < 0.05) improvement in its physical (thickness, transparency, water vapor transmission rate (WVTR)) and mechanical (tensile strength, modulus of elasticity) properties. In addition, the addition of nanocellulose also improved the thermal properties of the bioplastics as well, showing an increase of 0.96% in melting point, 72.71% in T-onset, 19.10% and in T-max. These improvements open up the opportunity for the application of nanocellulose-reinforced agar-based bioplastics as food packaging material. [GRAPHICS]
引用
收藏
页码:1085 / 1100
页数:16
相关论文
共 52 条
[1]   Biobased ternary films of thermoplastic starch, bacterial nanocellulose and gallic acid for active food packaging [J].
Almeida, Tania ;
Karamysheva, Anna ;
Valente, Bruno F. A. ;
Silva, Jose M. ;
Braz, Marcia ;
Almeida, Adelaide ;
Silvestre, Armando J. D. ;
Vilela, Carla ;
Freire, Carmen S. R. .
FOOD HYDROCOLLOIDS, 2023, 144
[2]   Effect of cellulose nanocrystals and gelatin in corn starch plasticized films [J].
Alves, J. S. ;
dos Reis, K. C. ;
Menezes, E. G. T. ;
Pereira, F. V. ;
Pereira, J. .
CARBOHYDRATE POLYMERS, 2015, 115 :215-222
[3]   Sorghum straw: Pulping and bleaching process optimization and synthesis of cellulose acetate [J].
Andrade Alves, Jessica A. ;
Lisboa dos Santos, Matheus D. ;
Morais, Cleiber Cintra ;
Ramirez Ascheri, Jose L. ;
Signini, Roberta ;
dos Santos, Danilo Martins ;
Cavalcante Bastos, Suely M. ;
Ramirez Ascheri, Diego P. .
INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2019, 135 :877-886
[4]   Glycerol-plasticized bacterial nanocellulose-based composites with enhanced flexibility and liquid sorption capacity [J].
Cielecka, Izabela ;
Szustak, Marcin ;
Kalinowska, Halina ;
Gendaszewska-Darmach, Edyta ;
Ryngajllo, Malgorzata ;
Maniukiewicz, Waldemar ;
Bielecki, Stanislaw .
CELLULOSE, 2019, 26 (09) :5409-5426
[5]   Preparation of Nanocellulose from Cotton Fibers in Deep Eutectic Solvent (DES) and its Application in Paper [J].
Deng, Xiaonan ;
Wan, Lingzhong ;
Sun, Hui ;
Li, Changfeng ;
Liu, Fangzhi ;
Yan, Xiaoming ;
Liu, Kun ;
Ye, Sihong .
BIORESOURCES, 2022, 17 (01) :714-724
[6]   Degradable Bioplastic Developed from Pine-Wood Nanocellulose as a Filler Combined with Orange Peel Extract [J].
Dibha, Alyaa Farrah ;
Masruri, Masruri ;
Srihardyastutie, Arie .
INDONESIAN JOURNAL OF CHEMISTRY, 2023, 23 (01) :127-139
[7]   Addition of wheat straw nanofibrils to improve the mechanical and barrier properties of cassava starch-based bionanocomposites [J].
do Lago, Rafael Carvalho ;
Matos de Oliveira, Ana Lazara ;
dos Santos, Allan de Amorim ;
Mauricio Zitha, Elidio Zaidine ;
Nunes Carvalho, Elisangela Elena ;
Denzin Tonoli, Gustavo Henrique ;
de Barros Vilas Boas, Eduardo Valerio .
INDUSTRIAL CROPS AND PRODUCTS, 2021, 170
[8]   Alfa fibers as viable sustainable source for cellulose nanocrystals extraction: Application for improving the tensile properties of biopolymer nanocomposite films [J].
El Achaby, Mounir ;
Kassab, Zineb ;
Barakat, Abdelatif ;
Aboulkas, Adil .
INDUSTRIAL CROPS AND PRODUCTS, 2018, 112 :499-510
[9]   Cellulose microfibres produced from banana plant wastes: Isolation and characterization [J].
Elanthikkal, Silviya ;
Gopalakrishnapanicker, Unnikrishnan ;
Varghese, Soney ;
Guthrie, James T. .
CARBOHYDRATE POLYMERS, 2010, 80 (03) :852-859
[10]   A Comparison of Cellulose Nanocrystals and Nanofibers as Reinforcements to Amylose-Based Composite Bioplastics [J].
Faisal, Marwa ;
Zmiric, Marija ;
Kim, Ngoc Quynh Nhu ;
Bruun, Sander ;
Mariniello, Loredana ;
Famiglietti, Michela ;
Bordallo, Heloisa N. ;
Kirkensgaard, Jacob Judas Kain ;
Jorgensen, Bodil ;
Ulvskov, Peter ;
Hebelstrup, Kim Henrik ;
Blennow, Andreas .
COATINGS, 2023, 13 (09)