Natural Language Processing Methods for the Study of Protein-Ligand Interactions

被引:2
作者
Michels, James [1 ]
Bandarupalli, Ramya [2 ]
Akbari, Amin Ahangar [2 ]
Le, Thai [3 ]
Xiao, Hong [1 ,4 ]
Li, Jing [2 ]
Hom, Erik F. Y. [5 ,6 ]
机构
[1] Univ Mississippi, Dept Comp & Informat Sci, University, MS 38677 USA
[2] Univ Mississippi, Sch Pharm, Dept Biomol Sci, University, MS 38677 USA
[3] Indiana Univ, Dept Comp Sci, Bloomington, IN 47408 USA
[4] Univ Mississippi, Inst Data Sci, University, MS 38677 USA
[5] Univ Mississippi, Dept Biol, University, MS 38677 USA
[6] Univ Mississippi, Ctr Biodivers & Conservat Res, University, MS 38677 USA
关键词
NEURAL-NETWORK; STRUCTURE PREDICTION; AFFINITY PREDICTION; INFORMATION-SYSTEM; CHEMICAL LANGUAGE; DATABASE; BINDING; ATTENTION; SEQUENCE; REPRESENTATIONS;
D O I
10.1021/acs.jcim.4c01907
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Natural Language Processing (NLP) has revolutionized the way computers are used to study and interact with human languages and is increasingly influential in the study of protein and ligand binding, which is critical for drug discovery and development. This review examines how NLP techniques have been adapted to decode the "language" of proteins and small molecule ligands to predict protein-ligand interactions (PLIs). We discuss how methods such as long short-term memory (LSTM) networks, transformers, and attention mechanisms can leverage different protein and ligand data types to identify potential interaction patterns. Significant challenges are highlighted including the scarcity of high-quality negative data, difficulties in interpreting model decisions, and sampling biases in existing data sets. We argue that focusing on improving data quality, enhancing model robustness, and fostering both collaboration and competition could catalyze future advances in machine-learning-based predictions of PLIs.
引用
收藏
页码:2191 / 2213
页数:23
相关论文
共 269 条
[51]   Models of protein-ligand crystal structures: trust, but verify [J].
Deller, Marc C. ;
Rupp, Bernhard .
JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2015, 29 (09) :817-836
[52]   Review of AlphaFold 3: Transformative Advances in Drug Design and Therapeutics [J].
Desai, Dev ;
Kantliwala, Shiv, V ;
Vybhavi, Jyothi ;
Ravi, Renju ;
Patel, Harshkumar ;
Patel, Jitendra .
CUREUS JOURNAL OF MEDICAL SCIENCE, 2024, 16 (07)
[53]   Transcriptional regulation of metabolism [J].
Desvergne, B ;
Michalik, L ;
Wahli, W .
PHYSIOLOGICAL REVIEWS, 2006, 86 (02) :465-514
[54]  
Devlin J., 2018, ARXIV
[55]  
Dhariwal P, 2021, ADV NEUR IN, V34
[56]   Insights into Protein-Ligand Interactions: Mechanisms, Models, and Methods [J].
Du, Xing ;
Li, Yi ;
Xia, Yuan-Ling ;
Ai, Shi-Meng ;
Liang, Jing ;
Sang, Peng ;
Ji, Xing-Lai ;
Liu, Shu-Qun .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (02)
[57]   A data science roadmap for open science organizations engaged in early-stage drug discovery [J].
Edfeldt, Kristina ;
Edwards, Aled M. ;
Engkvist, Ola ;
Guenther, Judith ;
Hartley, Matthew ;
Hulcoop, David G. ;
Leach, Andrew R. ;
Marsden, Brian D. ;
Menge, Amelie ;
Misquitta, Leonie ;
Mueller, Susanne ;
Owen, Dafydd R. ;
Schuett, Kristof T. ;
Skelton, Nicholas ;
Steffen, Andreas ;
Tropsha, Alexander ;
Vernet, Erik ;
Wang, Yanli ;
Wellnitz, James ;
Willson, Timothy M. ;
Clevert, Djork-Arne ;
Haibe-Kains, Benjamin ;
Schiavone, Lovisa Holmberg ;
Schapira, Matthieu .
NATURE COMMUNICATIONS, 2024, 15 (01)
[58]   A Computer Vision Approach to Align and Compare Protein Cavities: Application to Fragment-Based Drug Design [J].
Eguida, Merveille ;
Rognan, Didier .
JOURNAL OF MEDICINAL CHEMISTRY, 2020, 63 (13) :7127-7142
[59]   PROTEIN-STRUCTURE PREDICTION - RECOGNITION OF PRIMARY, SECONDARY, AND TERTIARY STRUCTURAL FEATURES FROM AMINO-ACID-SEQUENCE [J].
EISENHABER, F ;
PERSSON, B ;
ARGOS, P .
CRITICAL REVIEWS IN BIOCHEMISTRY AND MOLECULAR BIOLOGY, 1995, 30 (01) :1-94
[60]   Free energy simulations for protein ligand binding and stability [J].
El Hage, Krystel ;
Mondal, Padmabati ;
Meuwly, Markus .
MOLECULAR SIMULATION, 2018, 44 (13-14) :1044-1061