Revealing nanoscale mechanisms of pyrolysis at phenolic resin/carbon fiber interface

被引:0
作者
Gallegos, Ivan [1 ]
Varshney, Vikas [2 ]
Kemppainen, Josh [1 ]
Odegard, Gregory M. [1 ]
机构
[1] Michigan Technol Univ, 1400 Townsend Dr, Houghton, MI 49931 USA
[2] Air Force Res Lab, 2941 Hobson Way, Wright Patterson AFB, OH 45433 USA
基金
美国国家航空航天局;
关键词
MOLECULAR-DYNAMICS; FORCE-FIELD; REAXFF; RESIN; SYSTEMS; DFTB;
D O I
10.1007/s10853-025-10769-x
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Carbon-carbon composites are a material commonly used in high heat flux heat environments, such as space missions for terrestrial re-entry. Phenolic resins have been used as carbon matrix precursors due to high char yields of 50 - 55%. In this work, molecular dynamics models of a phenolic resin matrix were polymerized and pyrolyzed in the presence of a carbon fiber (CF) surface using experimentally validated protocols to quantify the nanostructural and chemical evolution of the resin matrix as a function of distances from the resin/fiber interface. After pyrolysis, the predicted char yield was 64.2 +/- 0.6%, indicating the presence of the CF surface aids in mass retention relative to a model of a pyrolyzed neat phenolic resin. Ring alignment analyses of the evolving pyrolyzed structures showed signs of templating as rings aligned with the CF surface. Filtering out non-aligned rings revealed bands of charred resin matrix equidistant from one another with similar spacing as that of graphene layers in graphite. The methodology presented helps reveal nanolength scale mechanisms of pyrolysis at resin/fiber interfaces and quantifies microstructural changes difficult to observe in situ, which is important to tailor processing parameters and optimize carbon composite manufacturing.
引用
收藏
页码:5106 / 5124
页数:19
相关论文
共 49 条
[1]   Parallel reactive molecular dynamics: Numerical methods and algorithmic techniques [J].
Aktulga, H. M. ;
Fogarty, J. C. ;
Pandit, S. A. ;
Grama, A. Y. .
PARALLEL COMPUTING, 2012, 38 (4-5) :245-259
[2]   Wetting Simulations of High-Performance Polymer Resins on Carbon Surfaces as a Function of Temperature Using Molecular Dynamics [J].
Bamane, Swapnil S. ;
Gaikwad, Prashik S. ;
Radue, Matthew S. ;
Gowtham, S. ;
Odegard, Gregory M. .
POLYMERS, 2021, 13 (13)
[3]   Comparison of ReaxFF, DFTB, and DFT for Phenolic Pyrolysis. 2. Elementary Reaction Paths [J].
Bauschlicher, Charles W., Jr. ;
Qi, Tingting ;
Reed, Evan J. ;
Lenfant, Antonin ;
Lawson, John W. ;
Desai, Tapan G. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (44) :11126-11135
[4]   Principal component analysis [J].
Bro, Rasmus ;
Smilde, Age K. .
ANALYTICAL METHODS, 2014, 6 (09) :2812-2831
[5]   Modeling initial stage of phenolic pyrolysis: Graphitic precursor formation and interfacial effects [J].
Desai, Tapan G. ;
Lawson, John W. ;
Keblinski, Pawel .
POLYMER, 2011, 52 (02) :577-585
[6]  
Deshpande PP, 2020, P AM SOC COMP 35 TEC, DOI [10.12783/asc35/34889, DOI 10.12783/ASC35/34889]
[7]   Prediction of the Interfacial Properties of High-Performance Polymers and Flattened CNT-Reinforced Composites Using Molecular Dynamics [J].
Deshpande, Prathamesh P. ;
Radue, Matthew S. ;
Gaikwad, Prashik ;
Bamane, Swapnil ;
Patil, Sagar U. ;
Pisani, William A. ;
Odegard, Gregory M. .
LANGMUIR, 2021, 37 (39) :11526-11534
[8]   Investigating the structure-property correlations of pyrolyzed phenolic resin as a function of degree of carbonization [J].
Gallegos, Ivan ;
Varshney, Vikas ;
Kemppainen, Josh ;
Odegard, Gregory M. .
NANOSCALE ADVANCES, 2025, 7 (06) :1582-1595
[9]   Establishing Physical and Chemical Mechanisms of Polymerization and Pyrolysis of Phenolic Resins for Carbon-Carbon Composites [J].
Gallegos, Ivan ;
Kemppainen, Josh ;
Gissinger, Jacob R. ;
Kowalik, Malgorzata ;
van Duin, Adri ;
Wise, Kristopher E. ;
Gowtham, S. ;
Odegard, Gregory M. .
CARBON TRENDS, 2023, 12
[10]  
Gardziella A., 2013, Phenolic Resins: Chemistry, Applications, Standardization, Safety and Ecology